Stroi-doska.ru

Строй Доска
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Угол естественного откоса град

Определение угла естественного откоса песчаного грунта в сухом и влажном состоянии. Определение угла естественного откоса грунтов Угол естественного откоса грунта значение

Определение угла естественного откоса песчаного грунта в сухом и влажном состоянии. Определение угла естественного откоса грунтов Угол естественного откоса грунта значение

Лабораторная работа №1

Определение гранулометрического состава песка и степени его однородности

Цель работы: определение свойств грунта (песка) по его гранулометрическому составу. Зная его состав и содержание в нем определения фракций, можно судить о его свойствах и применении в практике строительства (растворы, песчаные подушки, фундаменты и т.п.).

Задачи работы : получить навыки определения процентного содержания каждой фракции, квартования, определения однородности и неоднородности грунтов по графику.

Обеспечивающие средства: сита, электронные весы, навеска воздушно-сухого песка.

Цель работы. Определить величины угла естественного откоса и угла ссыпания зернисто-кускового материала.

Теоретические положения . Зернисто-кусковой материал, лежащий на наклонной плос­кости (например, на наклонной плоскости бункера , на наклон­ном ленточном транспортере и т. д.), при определенном угле наклона этой плоскости к горизонту начинает ссыпаться по ней. Такой предельный угол наклона называется углом ссыпания.

В зависимости от формы кусочков можно наблюдать два ви­да движения кускового материала по плоскости ссыпания: сколь­жение и перекатывание. Скольжение наблюдается при кусках с развитыми плоскими гранями; передвижению кусков здесь препятствует трение скольжения между гранями кусков и плос­костью ссыпания. Качение наблюдается при форме кусков, близкой к шару. В этом случае передвижение куска происходит как скатывание его, с сопротивлением трения качения.

Предельное состояние покоя слоя кускового материала на наклонной плоскости имеет место тогда, когда сила трения F равна проекции М силы тяжести G на эту плоскость (рисунок 1). С другой стороны, эта же сила трения пропорциональна нор­мальному давлению кускового материала на наклонную плос­кость

F = M = fN ,

откуда f = М / N = tgα

где f – коэффициент трения, определяемый свойствами самого материала, равный tga ;

α – угол ссыпания зернисто-кускового материала.

Если рассматривать весь слой сыпучего материала , который перемещается по гладкой наклонной плоскости, то здесь, даже в случае кусков шарообразной формы, происходит скорее сколь­жение материала по плоскости, чем перекатывание, так как весь материал «течет» сплошной массой.

Угол ссыпания зависит от коэффициента трения материала о плоскость ссыпания, от формы и крупности кусков, от структу­ры поверхности, по которой происходит ссыпание (поверхность может быть гладкой, шероховатой, ребристой и т. д.), а также он влажности самого кускового материала.

Если насыпать зернисто-кусковой материал на горизонталь­ную плоскость, то он располагается на ней в виде конуса. Угол между образующей этого конуса и горизонтальной плоско­стью называется углом естественного откоса зернисто-кускового материала.

Угол естественного откоса всегда больше угла ссыпания (для одного и того же материала), так как наличие неровностей на поверхности материала препятствует скатыванию, а тем более скольжению кусков. Угол естественного откоса в большой степе­ни зависит от фракционного состава кускового материала, ибо последний определяет собой общую структуру поверхности ко­нуса. Эта разнородность размера кусков вызывает в то же вре­мя преимущественное скатывание крупных кусков материала на край насыпаемой кучи, вследствие того, что неровности поверх­ности оказывают меньшее сопротивление перекатыванию крупн ых кусков, чем мелких (рисунок 2). Неравномерное распределение кусков по крупности необходимо учитывать при загрузке насадочных абсорберов, шахтных печей и т. д., так как в местах рас­положения крупных кусков, т. е. на-периферии, получается боль­шее сечение каналов и газ пойдет преимущественно по этим ка­налам, имеющим меньшее гидравлическое сопротивление.

Тонко измельченные материалы имеют больший угол естест­венного откоса, т. е. меньшую сыпучесть, в связи с более разви­той поверхностью трения.

Угол естественного откоса значительно зависит от влажности материала, потому что вода, располагаясь на поверхности кус­ков, вызывает слипание их и тем самым затрудняет движение отдельных кусков. Чем меньше куски материала, тем больше проявляется влияние влажности; но чрезмерное увлажнение приводит к увеличению послойной текучести жидкости между кусочками материала, и угол естественного откоса вновь умень­шается (таблица 1).

Угол естественного откоса, град, для породы

Угол естественного откоса и угол ссыпания резко уменьшают­ся при движении материала и плоскости, на которой он лежит. При сотрясениях или вибрациях материал интенсивно рассыпа­ется, растекается, стремясь принять горизонтальное положение, так как при вибрациях в отдельные моменты уменьшается вза­имное трение по поверхности соприкосновения кусочков друг с другом и кусочков с плоскостью. На этом основано применение вибротранспортирующих устройств, вибраторов для облегчения разгрузки бункеров, самосвалов и дозирующих устройств.

Знание углов естественного откоса и ссыпания необходимо при проектировании складских помещений, транспортеров, шахт­ных печей, где имеют дело с сыпучими материалами. Невозмож­ность учета теоретически всех факторов, определяющих величи­ну этих углов, приводит к необходимости экспериментального их определения.

Описание установки. Для определения угла естественного откоса используется гладкая горизонтальная плоскость с нанесенными на ней делениями в сантиметрах и короткий металлический цилиндр; для определения угла ссыпания — прибор, состоящий из вала 1, на который навертывается шнур, кронштейна 2, через который шнур соединяется с подъемной доской 3, и угломера 4, установленного у оси вращения подъемной доски. Подъемная доска снабжена указателем, показывающим на угломере угол ее подъема (рисунок 3). Для сбора ссыпавшейся массы поставлен ящик. В рабо­те используется также линейка, весы и прямоугольная металли­ческая рамка.

Проведение опыта и запись наблюдений. При определении углов естественного откоса и ссыпания ис­пользуется сыпучий материал двух или трех сортов крупности.

А. Определение угла естественного откоса

1. Установить металлический цилиндр в центре горизонталь­ной плоскости,

2. Набрать совком сыпучий материал и высыпать его в цилиндр.

3. Медленно поднять цилиндр, предоставив материалу сво­бодно рассыпаться по плоскости.

Б. Определение угла ссыпания

1. Уложить на подъемной доске прямоугольную металличес­кую рамку и полностью засыпать ее сыпучим материалом.

2. Снять прямоугольную рамку и, медленно вращая вал, при­вести подъемную доску в наклонное положение.

3. Когда материал начнет ссыпаться, прекратить подъем до­ски и записать угол ее наклона. Перенести весь материал с подъемной доски и ее подставки на лист бумаги, взвесить мате­риал, добавить определенное количество воды (заданное препо­давателем), тщательно перемешать и произвести с влажным ма­териалом те же определения (этапы А, 1 — 4 и Б,

Результаты опытов внести в таблицу 2.

Наименование исследуемого материала

Угол естественного откоса

Обработка результатов опыта. Пользуясь соотношением определить величину tg α и по таблицам найти соответству­ющее значение α.

font-size:14.0pt; font-family:» times new roman>где α – угол естественного откоса, град.;

Н – высота насыпанной кучи материала, см;

D – диаметр насыпанной кучи материала, см;

font-size:14.0pt; font-family:» times new roman>– радиус насыпанной кучи материала, см,

1) Краткое изложение теории и цель работы.

2) Схема установки.

4) Вывод по работе.

Задание на подготовку к лабораторной работе .

1) Измельчение твёрдых материалов и их классификация .

2) Измельчение, грохочение и дозирование твёрдых тел .

Контрольные вопросы .

1) Объясните понятие «угол ссыпания».

2) Виды движения кускового материала по плоскости ссыпания.

3) Назовите факторы, от которых зависит величина угла ссыпания зернисто-кускового материала.

4) Объясните понятие «угол естественного откоса зернисто-кускового материала».

5) Назовите факторы, от которых зависит величина угла естественного откоса.

6) Скажите какая величина больше — угол ссыпания или угол естественного откоса, объясните почему.

7) Как изменяется величина угла ссыпания и угла естественного откоса при движении материала и плоскости, на которой он лежит?

8) Как угол естественного откоса зависит от влажности?

9) тонко или крупно измельчённый материал имеет больший угол естественного откоса?

Читать еще:  Как построить откосы площадки

10) Для чего необходимо знание углов естественного откоса и ссыпания?

Углом естественного откоса грунта называется наибольшее значение угла, который образует с горизонтальной плоскостью поверхность грунта, отсыпанного без толчков; сотрясений и колебаний.
Угол естественного откоса зависит от сопротивления грунта сдвигу. Для установления этой зависимости представим себе грунтовое тело, рассеченное плоскостью а — а, наклоненной к горизонту под углом а (рис. 22).

Часть грунта выше плоскости а — а, рассматриваемая как единый массив, может оставаться в покое или прийти в движение под действием силы P — собственного веса и воздействия возведенного на нем сооружения.
Разложим P на две силы: N = P cos а, направленную нормально к плоскости а — а и силу T = P sin а, параллельную плоскости а — а. Сила T стремится сдвинуть отсеченную часть, которая удерживается силами сцепления и трения в плоскости а — а.
В состоянии предельного равновесия, когда сдвигающая сила уравновешивается сопротивлением трения и сцепления, но когда сдвига еще нет, выполняется равенство 26, т. е. T = N tg ф + CF.
В глинистых грунтах сдвигу в основном противодействует сцепление.

В сухом песке сцепления почти нет и состояние предельного равновесия характеризуется соотношением T = N tg ф. Подставляя значения N и T, получим P sin а = P cos a tg ф или tg a = tg ф и а = ф, т. е. угол а соответствует углу внутреннего трения грунта ф в состоянии предельного равновесия массива несвязного грунта.
Определение угла естественного откоса песка показано на рис. 23. Угол естественного откоса песка определяют дважды — для состояния естественной влажности и под водой. Для этого в стеклянный прямоугольный сосуд насыпают песчаный грунт, как показано на рис. 23, а. Затем сосуд наклоняют под углом не менее 45° и осторожно возвращают в прежнее положение (рис. 23, б). Далее определяется угол а между образовавшимся откосом песчаного грунта и горизонталью; о величине угла а можно судить по отношению hl, равному tg а.

В последние годы для определения характеристик сопротивления грунтов сдвигу предложен ряд новых методов: по данным испытания грунтов в стабилометрах (см. рис. 11), по вдавливанию шарикового штампа в грунт (рис. 24), аналогично определению твердости по Бринеллю и др.
Испытание грунта методом шариковой пробы (рис. 24) заключается в измерении осадки шарика S при действии на него постоянной нагрузки р.
Значение эквивалентного сцепления грунта определяется по следующей формуле:

где P — полная нагрузка на
D — диаметр шарика, см;
S — осадка шарика, см.

Величина сцепления сш учитывает не только силы сцепления грунта, но и внутреннее трение.
Для определения удельного сцепления с значение сш умножается на коэффициент К, который зависит от угла внутреннего трения ф (град).

В последние годы метод шариковой пробы стали применять в полевых условиях. В этом случае применяются полусферические штампы размером до 1 м (рис. 25).
Характеристики сдвига ф и с называются прочностными и точность их определения имеет большое значение при расчете оснований сооружений по прочности и устойчивости.

Гранулометрический состав. Практически характер и качество разрушения породы четко определяется ее гранулометрическим составом. Он характеризует разрыхленную горную породу по процентному содержанию в ней частиц различной крупности и может быть изображен кривой (рис. 2.1), если по оси абсцисс отложить диаметр частиц, мм, а по оси ординат — суммарное содержание частиц диаметром, меньшим данного, в процентах.
Для характеристики неоднородности рыхлых пород используется отношение d60/d10=Kн называемое коэффициентом неоднородности (d60, d10 — максимальные диаметры кусков, составляющих 60 и 10% общего объема рыхлой породы соответственно).
Особенно важное значение гранулометрический состав породы имеет при процессах гидромеханизации. От него зависят удельный расход воды на разработку и транспортирование, наименьший допустимый уклон подошвы забоя и лотков, критическая скорость воды.
Угол естественного откоса φ — максимальный угол, образуемый свободной поверхностью рыхлой раздробленной породы с горизонтальной плоскостью. Частицы породы, находящиеся на этой поверхности, испытывают состояние предельного равновесия. Если вес частицы Р (рис. 2.2), то в состоянии предельного равновесия на свободной поверхности на частицу действуют силы: Рп — сила нормального давления, прижимающая частицу к свободной поверхности; Рτ — сила, стремящаяся сдвинуть частицу вниз; Fт — сила трения, зависящая от Рn и коэффициента трения fтр, R — реакция опоры. Поскольку частица находится в равновесии, имеем

Таким образом, угол естественного откоса зависит от коэффициента трения между кусками породы и поверхностью, по которой возможно ее скольжение. Для рыхлой (сыпучей) среды, например песка, он может быть определен с помощью цилиндрической емкости без дна. Емкость устанавливают на горизонтальной площадке и заполняют породой. Затем емкость поднимают и порода формирует свободную поверхность, соответствующую углу естественного откоса.
В общем случае угол естественного откоса зависит от шероховатости зерен, степени их увлажнения, гранулометрического состава и формы, а также от плотности материала. С увеличением влажности до некоторого предела у таких горных пород, как уголь или песок, угол естественного откоса возрастает. С увеличением крупности и угловатости частиц он также увеличивается. В целом у рыхлых пород он находится в пределах 0-40°.
По углам естественного откоса определяют максимальные допустимые углы откосов уступов и бортов карьеров, насыпей, отвалов и штабелей.

Раймонд Милл

Мы держим » Преследуя A & C технологии и качества » как наша концепция управления все время.

Горячие продукты

Конусная дробилка серии S

По сравнению с другими видами дробилок, Конусная дробилка серии S отлично подходит для дробления твердых материалов и конечного продукта .

Конусная дробилка серии HP

Основанная на новейших технологиях и многолетнем опыте производства, A & C разработала серию конусной дробилки HP .

HST Конусная Дробилка

Одноцилиндровая гидравлическая конусная дробилка серии HST — это новая и эффективная дробилка, разработанная и .

Щековая дробилка серии PEW

Щековая дробилка серии A & C в основном используются в металлургической, горнодобывающей промышленности, строительстве .

Ударная дробилка серии PF

Поглощая передовые технологии мира, мы исследовали и разработали Ударная дробилка серии PF .

Машина для производства песка VSI

Ударная дробилка с вертикальным валом серии A & C VSI разработана известным немецким экспертом A & C, и каждый индекс .

Молотковая дробилка; молотковая мельница

Молотковая мельница (также называемая крупнозернистой мельницей серии HM) является одним из видов новых высокоэффективных шлифовальных машин .

Цементная мельница

Цементная мельница — это оборудование, которое используется для измельчения твердого, узлового клинкера из цементной печи в мелкий серый .

Среднескоростная трапециевидная мельница серии MTM

Средне-скоростная трапециевидная шлифовальная машина MTM является одним из ведущих мировых производителей .

Вертикально-шлифовальный станок LM

В соответствии с требованиями клиентов, A & C успешно использует зарубежный опыт и передовые технологии .

Угольная мельница

Угольная мельница является важным вспомогательным оборудованием для угольно-порошковой печи, у нее есть три способа измельчения кускового угля .

Сверхтонкая мельница серии XZM

На протяжении почти 30 лет A & C специализируется на всех аспектах проектирования и обслуживания мельниц. Сверхтонкая мельница серии XZM .

Получить цену и поддержку

Просто заполните форму ниже, нажмите «Отправить», вы получите прайс-лист, и представитель A & C свяжется с вами в течение одного рабочего дня. Пожалуйста, не стесняйтесь связаться с нами по электронной почте или телефону. (* Обозначает обязательное поле).

Приложения — угол естественного откоса кварцевого песка

Гост угол естественного откоса песка

Углом естественного откоса называется угол, при котором неукрепленный откос песчаного грунта сохраняет равновесие или угол между образующей откоса свободно насыпанной массы песка и горизонталью.

Угол естественного откоса — Википедия

Угол естественного откоса (в механике грунтов) — угол, образованный свободной поверхностью рыхлой горной массы или иного сыпучего вещества с горизонтальной плоскостью.. Частицы вещества, находящиеся на свободной

Читать еще:  Максимальная высота откоса котлована

Угол естественного откоса песка » Починить

Именно таким образом угол естественного откоса песка с водой составляет от 20 до 35 градусов. Влажный песок, не содержит в себе воды, ведь осталось лишь наличие размокших частичек песка.

ОЦЕНКА МОДУЛЯ ДЕФОРМАЦИИ В ПЕСЧАНЫХ

Угол естественного откоса, град сухого 6 32-34 33 Показатели физико-механических свойств песка мелкого малой степени водонасыщения Угол естественного откоса, град сухого 6

УГОЛ ЕСТЕСТВЕННОГО ОТКОСА — Механика

В воздушно-сухом состоянии угол естественного откоса песчаного грунта равен 30—40°, под водой — 24—33°. Для грунтов, не обладающих сцеплением (сыпучих), угол естественного откоса не превышает угла внутреннего трения:

Угол естественного откоса песка

Углом естественного откоса называется угол, при котором неукрепленный откос песчаного грунта сохраняет равновесие или угол между образующей откоса свободно насыпанной массы песка и горизонталью.

Угол естественного откоса — Angle of repose —

Угол естественного откоса, Угол естественного откоса иногда используется при проектировании стен фактически составляет критический угол естественного откоса для песка.

Определение угла естественного откоса

Определение угла естественного откоса песка под водой. После заполнения обоймы песком резервуар наполняют водой и после полного насыщения пробы определяют угол естественного откоса.

4 Минерально-строительные материалы »

Сыпучесть песка в значительной степени записи от его влажности. Наибольших значений (около 40°) угол естественного откоса достигает при влажности песка 5—10%.

Определение угла естественного откоса

Угол естественного откоса песков — это предельный угол свободного отсыпания песка, при котором грунтовая масса находится в устойчивом состоянии.

Фундаменты мелкого заложения и их

Угол естественного откоса влажного песка может быть больше угла внутреннего трения, так как в этом случае действуют капиллярные силы, удерживающие откос от разрушения.

Высота и углы откосов уступов карьера

Углы откосов рабочих уступов определяются проектом с учетом физико-механических свойств горных пород и не должны превышать 80 град., а при работе многоковшовых цепных экскаваторов с нижним черпанием и разработке

Ответы Mail.ru: Какое свойство песка??

Для мелкого песка-плывуна, который хорошо пропитан водой, угла естественного откоса вообще нет. Он совершенно расплывается. Однако перечисленные свойства характерны для чистого песка.

Угол естественного откоса песка –

Содержание Угол естественного откоса песка | Суровые будни начальника лабораторииУгол естественного откоса20. Угол естественного откоса. Термины, основные способы определения.Углы естественного откоса грунтов

угол естественного откоса песка — это Что

n geol. Sandböschung

Характеристики и физико-механические

Рис. 1. Определение угла естественного откоса. Для материалов, сцепление которых незначительно или вовсе отсутствует, угол внутреннего трения равен углу естественного откоса

Песок, его характеристика, свойства и

Эта величина имеет значение, однако, только для слегка влажного песка; совершенно же сухой песок при лабораторных условиях образует гораздо меньший угол естественного откоса —

Угол естественного откоса песка –

Содержание Угол естественного откоса песка | Суровые будни начальника лабораторииУгол естественного откоса20. Угол естественного откоса. Термины, основные способы определения.Углы естественного откоса грунтов

Характеристики и свойства сыпучих

В частности: размер частиц, плотность, объемная масса, коэффициент внутреннего трения, коэффициенты трения о твердые поверхности, угол естественного откоса, влажность, подвижность и связность частиц.

Откосы в траншее глубиной более 1м.

Крутизна откоса обусловлена углом естественного откоса а (при условии, что грунт находится в предельном равновесии) (рис.1). H/A=l/т, где т — коэффициент заложения. Рис.1. Крутизна откоса

Угол естественного откоса

Угол естественного откоса — это наибольший угол, который может быть образован откосом свободно насыпанного грунта в состоянии равновесия с горизонтальной плоскостью.. Угол естественного откоса зависит от

Текучесть порошков композиционных

5 Угол естественного откоса ф град 27 26 25 24 21 26 Изменения свойств индивидуальных порошков ПЦ, кварцевого песка, известняка при сухом помоле (без добавок С-3) от 8УД=3000 см2/г до 6000 см2/г представлены в табл.

Высота и углы откосов уступов карьера

Углы откосов рабочих уступов определяются проектом с учетом физико-механических свойств горных пород и не должны превышать 80 град., а при работе многоковшовых цепных экскаваторов с нижним черпанием и разработке

Угол естественного откоса грунта

Так, угол естественного откоса у песчаных грунтов и песка под влиянием влаги становится более устойчивым (песок средний сухой 28°, влажный 35°), но при сильном переувлажнении песка откос его начинает сползать.

угол естественного откоса щебня

Мобильная щековая дробилка

Мобильная роторная дробилка

Мобильная конусная дробилка

Мобильная центробежная дробилка

Мобильная дробилка для песка +мойка

Трехступенчатая мобильная станция

Четырехступенчатая мобильная станция

HGT гидрационная дробилка

Щековая дробилка серии C6X

Щековая дробилка серии JC

Щековая дробилка серии HJ

Щековая дробилка серии PE

Роторная дробилка серии CI5X

Первичная роторная дробилка

Гидравлическая роторная дробилка

Роторная дробилка серии PF

Конусная дробилка серии HPT

Конусная дробилка серии HST

Конусная дробилка серии CS

Ударная дробилка серии VSI6S

Ударная дробилка VSI серии DR

Ударная дробилка VSI серии B

VM вертикальная мельница

Сверхтонкая вертикальная мельница

MTW трапецеидальная мельница

HGM ультратонкая мельница

MB5X вальцовая мельница

Маятниковая мельница раймонд

T130X сверхтонкая мельница

Европейская молотковая дробилка

Виброгрохот серии S5X

Вибрационный питатель серии TSW

Тяжёлый вибропитатель серии FH

Вибропитатель серии GF

угол естественного откоса щебня

Угол естественного откоса щебня

Угол естественного откоса щебня Углы естественного откоса грунтов, отношение высоты к заложению для различных типов сухих, влажных и мокрых грунтов, песков, других пород

Угол естественного откоса — Википедия

Угол естественного откоса (в механике грунтов) — угол, образованный свободной поверхностью рыхлой горной массы или иного сыпучего вещества с горизонтальной плоскостью Частицы вещества, находящиеся на свободной

Угол естественного откоса

Угол естественного откоса — это наибольший угол, который может быть образован откосом свободно насыпанного грунта в состоянии равновесия с горизонтальной плоскостью Угол естественного откоса зависит от

Исследование угла естественного откоса

Таблица 2 Значения углов естественного откоса щебня Угол естественного откоса, град Фракция щебня В покое В движении при падении с высоты 100 мм 200 мм 300 мм >1 мм 50 45 27 23 1,02,5 мм 50 43 39 33 2,55,0 мм 55

Углы естественного откоса грунтов, отношение

Углы естественного откоса грунтов, отношение высоты к заложению для различных типов сухих, влажных и мокрых грунтов, песков, других пород Tehtabru Инженерный справочник

Плотность и углы естественного откоса сыпучих и

Углы естественного откоса, град : в движении в покое : Уголь древесный 0,12—0,3 — — Угольорешек 0,65—0,72 — — Уголь каменный 0,8—0,85 30 45 : Уголь каменный бурый 0,65—0,98 35 50 : Цемент сухой* 1—1,8 30 40 : Шлак доменный* 1—1,3 35 50 : Ш�

Таблица 2 Углы естественного откоса и трения

Угол ,град : естественного откоса : Трения : по дереву : по стали : Пшеница Рожь Ячмень Овёс: 2840 2338 2840 3144: 2025 20 2025 1535: 20 20 20 1836: Из таблицы 12 видно, что углы естественного откоса для семян одной и той же культуры ра�

Характеристики и физикомеханические свойства

Рис 1 Определение угла естественного откоса Для материалов, сцепление которых незначительно или вовсе отсутствует, угол внутреннего трения равен углу естественного откоса

Угол естественного откоса и коэффициент трения

Угол естественного откоса и коэффициент трения сыпучих материалов Если в горизонтальном расположении КСП будет иметь место скольжение слоя то, вследствии вертикального направления силы тяжести, оно в любом

ОФС142001615 Степень сыпучести порошков

Угол естественного откоса выражают в градусах, как вычисленное среднее значение, с указанием типа использованного оборудования, номера насадки, условий эксперимента (диаметр основания конуса, если он фиксированный

Читать еще:  Откос от армии невропатолог
Угол естественного откоса — Википедия

Угол естественного откоса (в механике грунтов) — угол, образованный свободной поверхностью рыхлой горной массы или иного сыпучего вещества с горизонтальной плоскостью Частицы вещества, находящиеся на свободной

Таблица 2 Углы естественного откоса и трения

Угол ,град : естественного откоса : Трения : по дереву : по стали : Пшеница Рожь Ячмень Овёс: 2840 2338 2840 3144: 2025 20 2025 1535: 20 20 20 1836: Из таблицы 12 видно, что углы естественного откоса для семян одной и той же культуры ра�

Угол откоса котлована таблица

Угол естественного откоса — наибольший угол, который может быть образован свободным откосом сыпучего материала с горизонтом в состоянии равновесия

Насыпная масса и угол естественного откоса

Угол наклона воронкообразной ча­сти бункера должен на 10—15 ° превышать угол естественного откоса материала в покое Т ребуемый геометрический объем бункера v 0 определяют по формуле (835)

ОПРЕДЕЛЕНИЕ УГЛОВ ЕСТЕСТВЕННОГО

Введение Угол естественного откоса широко используется при проектировании оборудования

ПРИМЕРЫ mylektsiisu

Угол естественного откоса щебня β = 35° Насыпная плотность щебня p нщ = 1450 кг/см 3 Решение: При расчете вместимости склада крупного заполни­теля (щебня) используют формулу V з = V сут · τ хр · 1,2 · 1,02,

Угол естественного откоса и коэффициент

Угол естественного откоса и коэффициент трения сыпучих материалов Если в горизонтальном расположении КСП будет иметь место скольжение слоя то, вследствии вертикального направления силы тяжести, оно в любом

Угол естественного откоса

Угол естественного откоса можно определить и другим способомНапри­мер, зерно насыпается в ящик с размерами 400х400х1000 и отверстием 300×400, расположенным внизу одной из стенок

Угол естественного откоса сыпучего материала

Угол естественного откоса ф — угол между боковой поверхностью свободно насыпной кучи сыпучего материала и горизонтальной плоскостьюЕсли сыпучий материал находится в движении, то в результате колебании при

ОФС142001615 Степень сыпучести порошков

Угол естественного откоса выражают в градусах, как вычисленное среднее значение, с указанием типа использованного оборудования, номера насадки, условий эксперимента (диаметр основания конуса, если он фиксированный

Таблица 2 Углы естественного откоса и трения

Угол ,град : естественного откоса : Трения : по дереву : по стали : Пшеница Рожь Ячмень Овёс: 2840 2338 2840 3144: 2025 20 2025 1535: 20 20 20 1836: Из таблицы 12 видно, что углы естественного откоса для семян одной и той же культуры ра�

Определение угла естественного откоса грунтов

Угол естественного откоса определяют на приборе УВТ (рис 844), который состоит из металлического столикаподдона, обоймы и резервуара Поддон установлен на тpex опорах и перфорирован

Насыпная масса и угол естественного откоса

Угол наклона воронкообразной ча­сти бункера должен на 10—15 ° превышать угол естественного откоса материала в покое Т ребуемый геометрический объем бункера v 0

ПРИМЕРЫ mylektsiisu

Угол естественного откоса щебня β = 35° Насыпная плотность щебня p нщ = 1450 кг/см 3 Решение: При расчете вместимости склада крупного заполни­теля (щебня) используют формулу V з = V сут · τ хр · 1,2 · 1,02,

Угол откоса котлована таблица

Угол естественного откоса — наибольший угол, который может быть образован свободным откосом сыпучего материала с горизонтом в состоянии равновесия saitinproru Чертеж

ОПРЕДЕЛЕНИЕ УГЛОВ ЕСТЕСТВЕННОГО ОТКОСА

Введение Угол естественного откоса широко используется при проектировании оборудования

Угол откоса котлована: таблица в зависимости от

Когда нужно выкопать выемку от 1,5 м глубиной, тогда следует принимать угол откоса котлована по таблице, приведенной в СНиП 111480 В ней учтены как разновидность грунта, так и глубина заложения основания

Углы откоса и прочие факторы распределения

На угол откоса руды, особенно пылеватой, влияет ее влажность Так, криворожская руда с размером частиц менее 2 мм в сухом состоянии имеет угол естественного откоса 37° 30′, а при 5% влажности — 45°

Транспортные характеристики грузов

Угол естественного откоса, или угол покоя Это угол между плоскостью основания штабеля и образующей, который зависит от рода и кондиционного состояния груза Рыхлые и

Угол естественного откоса сыпучего материала

Угол естественного откоса ф — угол между боковой поверхностью свободно насыпной кучи сыпучего материала и горизонтальной плоскостьюЕсли сыпучий материал находится в движении, то в результате колебании при

ПРИЛОЖЕНИЕ 3
Рекомендуемое

1. Для определения крутизны откоса принимаем буквенные обозначения величин:

h — высота откоса, м ;

q — крутизна (угол) откоса, град;

с и j — предельные значения удельного сцепления, кПа, и угла внутреннего трения, град, определяемые по формулам:

(1)

где c I и j I — расчетные значения соответственно удельного сцепления, кПа, и угла внутреннего трения, град, определенные согласно требованиям СНиП 2.02.01-83;

kst — коэффициент устойчивость, определяемый по формуле

(2)

здесь g n и g c — соответственно коэффициенты надежности по назначению и условий работы, принимаемые в соответствии со СНиП 2.02.01-83; для земляных сооружений высотой (глубиной) до 10 м со сроком службы до 5 лет допускается принимать значение коэффициента надежности по назначению g n = 1,05;

g I — расчетное значение удельного веса грунта, кН/м 3 , определяемого в соответствии с требованиями СНиП 2.02.01-83. Удельный вес, кН/м 3 , вычисляется путем умножения плотности, т/м 3 , на величину ускорения силы тяжести, 9,8 м/с 2 .

2. Находим число единиц загружения K в заданной нагрузке q , кПа, на поверхности грунтового массива по формуле

(3)

При отсутствии нагрузки на поверхности или ее расположении от бровки выемки на расстояниях, больше установленных в п. 5 , принимается К = 0.

3. Определяем параметр устойчивости по формуле

4. Требуемый угол откоса q находим по значениям j , К и Е следующим образом:

при Е £ 0,25 по графикам на черт . 1-5 с интерполяцией для промежуточных значений j и Е;

при Е > 0,25 по формуле

где q — предельное значение q (обозначено на верхнем обрезе координатной сетки на черт. 1-5 );

q 0,25 — значение q , соответствующее Е = 0,25.

5. Для временных откосов (со сроком службы до одного года) минимальное приближение к бровке bf , м, нагрузки, которую допускается не учитывать ( К = 0) при нахождении значения q , допускается определять в зависимости от ширины призмы обрушения откоса b , м:

а) при нагрузке от сыпучего материала с удельным весом g m £ 18 кН/м 3 (например, от отвала грунта), отсыпанного под углом естественного откоса, но не более 45 от горизонтали

(6)

б) при равномерно распределенной нагрузке

где g m = 18 кН/м 3 . (7)

Ширину призмы обрушения откоса b , м, определяем по формулам:

при Е ³ 0,167 (8)

при 0,167 > Е ³ 0,1

(9)

при Е

Параметр b находим по черт. 6 в зависимости от параметра hk , определяемого по формуле

(11)

Черт. 1. Графики для определения крутизны откоса при К = 0

Черт. 2. Графики для определения крутизны откоса при К = 1

Черт. 3. Графики для определения крутизны откоса при 1

Черт. 4. Графики для определения крутизны откоса при 2

Черт. 5. Графики для определения крутизны откоса при 3 K

скважин на воду, лицензия на недропользование, как оформить лицензию, подача документов в департамент роснедра»>http :// soyuzproekt . ru Бурение скважин под свайный фундамент . Бурение водопонижающих скважин (либо осущающих скважин ) и обустройство их необходимым насосным оборудованием с автоматикой. Бурение под буроинъекционные сваи, бурение под буронабивные сваи. Скважины различных диаметров.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector