Stroi-doska.ru

Строй Доска
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Расчет укрепления откосов насыпи

1. Область применения

1.1 . Технологическая карта разработана на укрепление конусов путепроводов и откосов неподтапливаемых насыпей и сухих выемок с помощью решетчатых конструкций.

1.2 . Технология и организация производства работ, изложенные в карте, предусматривают различные варианты расположения элементов решетчатых конструкций (рис. 1 ).

1.3 . В состав работ входят:

раскладка элементов на поверхности откоса с помощью автокрана;

устройство бетонного упора;

укладка элементов конструкции;

крепление уложенных элементов;

заполнение ячеек растительным грунтом с помощью автокрана и бадьи;

засев заполненных ячеек семенами трав вручную;

полив засеянных ячеек водой с помощью поливочно-моечной машины.

Рис. 1 . Варианты компоновки элементов решетчатых конструкций.

2. Организация и технология производства работ

2.1 . До начала работ по укреплению откосов и конусов насыпей необходимо:

произвести планировку и уплотнение откосов и конусов в соответствии с требованиями СНиП 3.02.01-87 «Земляные сооружения, основания и фундаменты» и СНиП 3.06.03-85 «Автомобильные дороги»;

выполнить геодезические разбивочные работы, обеспечивающие укладку элементов решетчатых конструкций в соответствии с проектом.

2.2 . Сборные элементы решетчатых конструкций должны изготовляться из бетона, отвечающего требованиям ГОСТ 26633 -85; арматура — из горячекатаной стали периодического профиля марки 25ГС или 36ГС ( ГОСТ 8478-81* ).

Железобетонные элементы изготавливают на базах ЖБК, складируют на специальные поддоны-кассеты, грузят краном на бортовые автомобили и доставляют на объект строительства.

Для обеспечения непрерывности производства работ на объекте должен быть запас железобетонных элементов на две-три сменные захватки.

2.3 . Работы по укреплению откосов земляного полотна решетчатыми конструкциями ведет комплексная механизированная бригада поточным методом на трех захватках площадью 200 . 250 м 2 каждая (рис. 2 ).

2.4 . Численность комплексной бригады 19 чел.:

Машинист экскаватора 5 разр. 1

» автокрана 5 разр. 1

Дорожный рабочий 4 разр. 1

Бетонщик 3 разр. 1

Монтажник конструкции 3 разр. 3

Рабочие владеют смежными профессиями, что позволяет достичь равномерной загрузки членов бригады.

2.5 . На первой захватке выполняются следующие технологические операции:

рытье траншеи под бетонный упор;

изготовление и установка щитов опалубки;

устройство бетонного упора;

обратная засыпка пазух траншеи.

Рис. 2 . Схема организации и производства работ.

Операции, выполняемые на захватках:

1- я захватка — раскладка элементов на откосе с помощью автокрана I; рытье траншеи под упор экскаватором II; устройство бетонного упора; засыпка пазух траншеи ранее выбранным грунтом;

2- я захватка — укладка элементов конструкции вручную; крепление уложенных элементов;

3- я захватка — заполнение ячеек растительным грунтом с помощью крана III и бадьи V; планировка растительного грунта вручную; засев заполненных растительным грунтом ячеек семенами трав; орошение водой из поливочно-моечной машины IV засеянного семенами трав грунта в ячейках. Стрелкой указано направление потока.

Для рытья траншеи под монолитный бетонный упор используют экскаватор ЭО-2521А с обратной лопатой. Траншею прокладывают вдоль подошвы земляного полотна согласно разбивочным точкам на глубину, несколько меньшую проектной (на 10 . 15 см).

Углубляют дно траншеи и доводят ее геометрические размеры до проектных вручную вслед за экскаваторными работами.

Норма времени, чел.-ч (маш.-ч)

Трудоемкость, чел.-ч (маш.-ч)

Прямая заработная плата, р.-к.

Устройство монолитного бетонного упора

Рытье траншеи экскаватором ЭО-2621А навымет

Доработка траншеи вручную

Изготовление щитов опалубки

Подноска щитов на расстояние до 20 м

Н. вр. = 1,5 + 0,56 = 2,06 Расц. = (0-96) + (0-35,8) = 1-31,8

Подсобный рабочий — 1

Устройство сплошного бетонного упора

1 изделие (длина 2 м)

Обратная засыпка пазух траншей ранее выброшенным грунтом вручную

Итого на 100 м монолитного бетонного упора

Устройство упора из сборных блоков

Рытье траншеи под упор

Раскладка блоков с помощью автокрана грузоподъемностью до 5 т

Такелажник 2 разр. — 1

Установка бетонных блоков

Обратная засыпка траншеи грунтом вручную

Итого на 100 м упора из сборных блоков

Укрепление откоса

§ Е1-5, п. 1а (применительно)

Раскладка железобетонных элементов на откосе автокраном (200 элементов на 100 м 2 откоса)

Заготовка деревянных кольев

§ Е3-17, п. 13 (применительно)

Укладка железобетонных элементов конструкций на поверхности откоса вручную

1 доска (на 1 элемент)

Забивка металлических штырей

Омоноличивание стыков цементным раствором

Заполнение ячеек растительным грунтом с помощью автокрана и бадьи

Планировка растительного грунта вручную

Засев ячеек семенами трав вручную

Полив засеянных ячеек водой с помощью поливочно-моечной машины через распылительные сопла, расход воды 4 м 3 на 100 м 2 поверхности откоса

Н. вр. = 0,082 · 4,0 = 0,32 Расц. = (0-06,3) · 4,0 = 0-25,2

Итого на 100 м 2 укрепленного откоса

Щиты опалубки изготавливают два плотника 2-го и 3-го разр. из сборных строганых досок толщиной 25 . 40 мм шириной 30 . 50 см (в зависимости от сечения упора).

Для устройства бетонного упора применяется гидротехнический бетон класса В15. Бетонная смесь доставляется на объект строительства автомобилями-самосвалами ЗИЛ-ММЗ-555 и выгружается у края траншеи.

Опалубку заполняют бетонной смесью вручную. Уплотняют бетон глубинным вибратором.

Упор устраивают за неделю до монтажа решетчатых конструкций, чтобы бетон достиг прочности, позволяющей дальнейшее производство работ.

По мере твердения бетонной смеси опалубку разбирают и очищают. Пазухи траншеи засыпают вручную ранее вынутым грунтом. Засыпка производится слоями с разбивкой комьев грунта и послойным уплотнением их ручной трамбовкой. В процессе уплотнения при необходимости грунт поливают водой.

Калькуляция трудовых затрат на устройство 100 м монолитного бетонного упора приведена в табл. 1. Сменная производительность звена из 6 чел. при устройстве упора — 40 . 60 м.

2.6 . Картой предусматривается вариант устройства упоров из сборных блоков размерами 200 ´ 20 ´ 34 см. Раскладывают и устанавливают их с помощью грузоподъемных механизмов (автокраны, машины с грузоподъемником, экскаваторы с навесным оборудованием).

Блоки устанавливают на основание из бетона или цементного раствора с последующей заливкой швов цементным раствором и их расшивкой. Сменная производительность звена из 7 чел. при монтаже сборных бетонных блоков — 40 . 50 м упора.

Калькуляция трудовых затрат на устройство 100 м упора из сборных блоков приведена в табл. 1.

2.7 . При укладке решетчатых конструкций с диагональным и прямоугольным расположением элементов упорами могут служить элементы нижнего пояса.

2.8 . На второй захватке выполняются следующие технологические операции:

раскладка железобетонных элементов на откос автокраном;

укладка железобетонных элементов на поверхность откоса вручную;

забивка металлических штырей;

омоноличивание стыков цементным раствором.

Разгрузка железобетонных элементов предусматривается автокраном КС-2561Д кассетным способом с равномерной раскладкой элементов на обочине или на поверхности откоса.

Для раскладки элементов привлекаются два такелажника из числа дорожных рабочих, входящих в звено по монтажу элементов решетчатой конструкции.

К монтажу элементов решетчатой конструкции приступают на участке лекальной кривой конуса, ведя работы снизу вверх начиная от бетонного упора.

Элементы укладывают на поверхность откоса по разбивочным линиям и временно закрепляют деревянными колышками (рис. 3). В процессе укладки устраняют неровности на поверхности откоса и следят, чтобы элементы плотно примыкали к ней.

При подаче железобетонных элементов к месту укладки вручную их спускают по уложенным на откосе доскам.

В местах стыковки укладываемых элементов забивают металлические штыри. Металлические штыри, скобы и монтажные петли элементов перед укладкой смазывают битумом.

Если в узлах крепления решетчатых конструкций предусматривается устройство железобетонных сваек, предварительно мотобуром ДС-10 бурят отверстия заданного диаметра и глубины.

Рис. 3 . Временное крепление узлов решетки при монтаже:

1 — сборный железобетонный элемент; 2 — деревянные колышки.

По окончании забивки металлических штырей (сваек) узлы решетчатых конструкций омоноличивают цементным раствором.

2.9 . На третьей захватке выполняются следующие технологические операции:

заполнение ячеек растительным грунтом с помощью автокрана и бадьи;

засев заполненных ячеек семенами трав вручную;

полив засеянных ячеек водой с помощью поливочно-моечной машины.

Растительный грунт доставляют автомобилями-самосвалами ЗИЛ-ММЗ-555 и выгружают в установленные рядом две бадьи, после чего автокраном грунт в бадье подается на откос. Необходимое количество растительного грунта для заполнения ячеек отсыпают из бадьи через разгрузочный затвор, открываемый и закрываемый дорожным рабочим. Растительный грунт в ячейках разравнивают и планируют вручную заподлицо с поверхностью элементов. Если вылет стрелы автокрана не обеспечивает распределение грунта по длине откоса, грунт необходимо распределять с верхней и нижней стоянок автокрана.

До начала посева должны быть приготовлены травосмеси требуемого состава. Рекомендуется использовать трехкомпонентные смеси трав следующего соотношения, %:

корневищные злаковые — 32 . 55 (для легких почвогрунтов — 55, для тяжелых связных — 35);

рыхлокустовые злаковые — 30 . 50 (для легких почвогрунтов — 30, для тяжелых связных — 50);

стержнекорневые бобовые — 5 . 20.

Высевают семена трав вручную. Распределение их по поверхности почвы должно быть равномерным, поэтому посев следует выполнять за два раза в двух направлениях — вдоль и поперек участка. Заделывают семена в растительный грунт граблями, после чего поверхность растительного слоя уплотняют вручную с помощью доски, насаженной на рукоятку.

Технологией работ предусмотрена периодическая поливка засеянных участков водой с помощью поливочно-моечной машины ПМ-130, движущейся вдоль укрепляемого откоса (расход воды 2 . 4 м 3 на 100 м 3 поверхности откоса). Орошение водой проводят до появления всходов. В дальнейшем его необходимо повторять при их заметном увядании.

Читать еще:  Джей профиль для откосов

2.10 . В технологической карте приведены трудозатраты на монтаж элементов решетчатых конструкций из расчета 200 шт. на 100 м 2 (см. табл. 1 ). Работы выполняет звено из 12 чел. При другом расходе конструктивных элементов для определения трудозатрат необходимо в каждом конкретном случае произвести перерасчет.

Устройство бетонного упора

Ровность поверхности боковых стенок и дна траншеи, проектные геометрические размеры, проектные отметки

Укладка элементов решетчатой конструкции

Симметричность и ровность укладки, крепление узлов

Заполнение ячеек растительным грунтом

Пригодность грунта и ровность поверхности в заполненных ячейках

Засев ячеек семенами трав

Порядок засева, норма расхода семян, заделка семян в грунт

Примечани е. Контроль каждой операции осуществляется мастером в процессе производства работ.

2.11 . При операционном контроле качества работ по укреплению откосов земляного полотна решетчатыми конструкциями следует проверять:

положение траншеи под упор в плане;

размеры траншеи по глубине и ширине;

толщину щебеночной подготовки;

правильность установки опалубки;

качество решетчатых конструкций и положение блоков в плане после установки;

полноту заполнения ячеек растительным грунтом;

порядок засева трав и уход за ними;

ровность откоса насыпи.

2.12 . Качество выполнения работ контролируют согласно табл. 2 .

3. Технико-экономические показатели

На 100 м бетонного упора:

Монолитный Упор из

бетонный упор сборных блоков

Затраты труда, чел.-дней. 10,32 8,38

Потребность в машинах, маш.-смен. 0,21 1,00

Выработка на одного рабочего, м. 16,7 14,3

Прямая заработная плата звена, р.-к. 52-16 45-61

На 100 м 2 укрепленного откоса:

Затраты труда. 10,73 чел.-дня

Потребность в машинах. 1,39 маш.-смены

Выработка на одного рабочего. 8,3 м 2

Прямая заработная плата звена. 62 р. 33 к.

4. Материально-технические ресурсы

4.1 . Потребность в растительном грунте, семенах трав для засева ячеек определена в соответствии со СНиП IV-2-82 (Приложение, т. 1, табл. 1-122) из расчета на 100 м 2 укрепленного откоса:

Семена трав (одинарная норма). 2,7 кг

Удобрения. 3,4 кг

Растительный грунт при толщине слоя 10 см. 10,5 м 3

То же, 15 см. 15,8 м 3

Вода. По потребности

(в пределах 2 . 4 м 3 )

4.2 . Потребность в основных материалах для устройства 100 м бетонного упора определена расчетом.

Упоры из монолитного бетона:

Бетон класса В15. 12,8 м 3

Щиты из досок толщиной 25 . 40 мм. 80 м 2

Упоры из сборных бетонных блоков:

Сборные бетонные блоки размерами 200 ´ 20 ´ 34 см. 295 шт. (4 м 3 )

4.3 . Потребность комплексной механизированной бригады в машинах, оборудовании и приспособлениях определена из расчета оптимальной их загрузки:

Экскаватор ЭО-2621А неполноповоротный гидравлический на

базе трактора КМЗ-6Л/6М с ковшом вместимостью 0,25 м 3 . 1

Кран автомобильный КС-2561 грузоподъемностью 6,3 т. 1

Машина поливочно-моечная ПМ-130. 1

Вибратор глубинный с гибким валом И-116. 2

Бадья с разгрузочным затвором. 3

5. Техника безопасности

5.1 . При производстве работ по укреплению откосов решетчатыми конструкциями необходимо соблюдать требования по охране труда, приведенные в соответствующих разделах «Правил техники безопасности при строительстве, ремонте и содержании автомобильных дорог» и СНиП III-4-80 «Техника безопасности в строительстве».

5.2 . Машинисты, рабочие и другие работники при выполнении дорожно-строительных работ должны быть обеспечены средствами защиты и специальной одеждой в соответствии с действующими правилами по охране труда и технике безопасности.

5.3 . Разработка дополнительных мероприятий по обеспечению безопасности труда не требуется.

9 Расчет устойчивости насыпей и выемок Общие положения

9.1 Устойчивость насыпей и выемок зависит от несущей способности их оснований, прочности грунтов насыпи, высоты и крутизны откосов насыпей и выемок, гидрологических условий и крутизны природных склонов.

Различают общую и местную устойчивость откоса.

9.2 В результате нарушения общей устойчивости происходит смещение значительных по размерам массивов грунта, слагающего откос. Основные формы нарушения общей устойчивости: скольжение, расползание, выдавливание.

9.3 Нарушения местной устойчивости возникают на поверхности откоса, непосредственно подверженной воздействию погодно-климатических факторов, вызывающих циклические процессы набухания-высушивания, промерзания-оттаивания и связанных с ними нарушения сплошности и снижения прочности грунта (выветривание). Основные формы нарушения местной устойчивости: сплывы, размывы и т.п, эрозийные разрушения поверхности откоса.

Мероприятия по обеспечению местной устойчивости откосов приведены в разделе 8 настоящего Пособия.

9.4 Расчет устойчивости насыпей, сооружаемых на слабых водонасыщенных грунтах, приведен в разделе 10 настоящего Пособия.

Расчет устойчивости земляного полотна на склонах (косогорах)

9.5 В сильнопересеченной местности земляное полотно может располагаться на склоне (косогоре). При крутизне склона до 1:3 (угол наклона до 18 о ), т.е. для пологих склонов, конструкцию земляного полотна принимают по типовым решениям (приложение Г). При крутизне склона более 1:3 (угле наклона более 18 о ) необходимо произвести расчеты устойчивости склона до устройства земляного полотна и после его устройства.

9.6 Проектирование земляного полотна на склоне ведут в следующей последовательности:

— по топографическим данным намечают вероятную трассу дороги, исходя из требований к плану и продольному профилю;

— на участках склона, пересекаемых трассой, выполняют подробные инженерно-геологические изыскания, захватывая весь склон сверху донизу;

— выбирают расчетные поперечники, в число которых включаются такие, где имеет место наиболее неблагоприятное сочетание факторов, от которых зависит устойчивость склона (инженерно-геологические и гидрогеологические условия), тип земляного полотна и его параметры (предварительные);

— для расчетных поперечников проводят геотехнические оценки путем расчета устойчивости:

— склона в природном состоянии;

— склона в целом после сооружения земляного полотна (системы склон-земляное полотно);

— верховой части склона после устройства земляного полотна в виде выемки или полувыемки;

— низовой части склона в случае наличия насыпной части склона;

— откосов насыпи и выемки;

— насыпи на поверхности склона;

— по результатам этих расчетов определяют участки конструкции, для обеспечения устойчивости которых требуется принимать соответствующие инженерные решения (смещение полотна, применение специальных удерживающих или поддерживающих конструкций, уположение и укрепление откосов и др.).

9.7 Расчет устойчивости склона в природном состоянии, системы склон-земляное полотно в целом, верховой части склона после устройства земляного полотна в виде выемки или полувыемки, низовой части склона, в случае наличия насыпной части склона, производится по формуле Маслова-Берера, построенной на гипотезе плоских поверхностей скольжения (ППС), рисунок 9.1

К к уст = , (9.1)

где К к уст — коэффициент устойчивости к-го элемента склона или земляного полотна;

Qi — вес расчетных блоков, т;

Ni, Тi — нормальная и сдвигающая составляющие от веса (Qi) расчетного блока грунта, т;

аi — угол наклона к горизонту поверхности скольжения в пределах i-го блока, град;

сi, φi — сцепление, МПа, и угол внутреннего трения грунта, град, на поверхности скольжения в пределах i-го блока;

li — длина i-го блока по поверхности скольжения, м;

j — индекс, указывающий границы расчетных блоков в пределах склона;

к — индекс, указывающий оцениваемый расчетом элемент склона или земляного полотна/

1  5 — номера расчётных блоков

Рисунок 9.1 Расчётная схема к определению устойчивости земляного полотна на склоне (косогоре)

9.8 На основе расчетов по формуле (9.1) при К уст = 1,3 в таблице 9.1 приведены рекомендуемые диапазоны размещения земляного полотна на склонах (косогорах) в зависимости от их крутизны.

Таблица 9.1 — Рекомендуемые диапазоны размещения земляного полотна на склоне

полотна на склоне

Возможности устройства выемки и насыпи на склоне, % от общей ширины

Проектирование поперечного профиля насыпей подходов

Насыпи подходов имеют ширину в соответствии с категорией автомобильной дороги. Откосы насыпи в нижней части подвержены действию воды до отметки Нп (см. формулу (3.4.1)) с верховой стороны. С низовой стороны действие воды распространяется до отметки РУВВ+0,5. В связи с этим заложение откоса на участке cd (рис. 3.4.1) принимается 1:2.

Рисунок 3.4.6 Поперечное сечение насыпей подходов с верховой стороны (левый откос) и с низовой стороны (правый откос): РУВВ – расчетный уровень высокой воды

Участок откоса ас имеет заложение сухой насыпи в соответствии с видом грунта насыпи. Если насыпь высотой более 6 м возводится из глинистых грунтов, то на участке откоса ав заложение 1:1,75, а на участке вс 1:2.

В случае применения песчаных грунтов m=1,5; n=1,5.

Возможен вариант поперечного сечения профиля насыпей подходов с бермами с верховой стороны или с верховой и низовой стороны (рис. 3.4.7).

Рисунок 3.4.7 Поперечное сечение подходов с бермами

Бермы обеспечивают возможность съезда на струенаправляющую дамбу и повышают устойчивость откоса.

Укрепление откосов назначают из следующих соображений.

Начало паводка весною сопровождается ледоходом. В это время возможен заход льдин из русла к насыпям подходов с верховой стороны. Сильные ветры вызывают волны, удар которых о поверхность откоса также угрожает его устойчивости. Поэтому с верховой стороны откосы укрепляют монолитным бетоном, сборными бетонными плитами на высоту Нп (см. формулу (3.4.1)). Выше этой отметки откос укрепляют посевом трав по плодородному слою или нетканым синтетическим материалом (НСМ) с семенами трав.

Читать еще:  Формулировка что такое откосы

Низовой откос в паводок не подвержен действию льдин. За счет продольного движения воды после моста ветровые волны гасятся и не оказывают влияния на низовой откос. Поэтому низовой откос укрепляют аналогично с неподтапливаемыми откосами насыпей (посев трав, НСМ и др.).

В курсовом проекте приводят два поперечных профиля насыпей подходов при высоте насыпи до 6 м и при высоте насыпи более 6 м и устройством берм. На поперечных профилях взамен буквенных обозначений Вдп, Нп, РУВВ, приведенных на рисунках (3.4.6) и (3.4.7) указывают цифровые значения.

Поперечные профили вычерчивают в масштабе 1:100, 1:50 на листе формата А4. В основной надписи в графе 3 записывают «Проект мостового перехода», а графе 4 «Поперечные профили насыпей подходов».

Чертеж «План мостового перехода»

Чертеж «План мостового перехода» формата А4хn выполняется в масштабе 1:1000 или 1:500 в зависимости от размера струенаправляющей дамбы (СНД). Например, длина СНД 270 м при высоте листа А4хn 297 мм можно применять масштаб 1:1000. Если длина СНД 130 м, то подходит масштаб 1:500.

Чертеж «План мостового перехода» включает положение русла, насыпи подходов, струенаправляющие дамбы, срезку поймы.

Мост изображается в виде двух параллельных относительно оси перехода линий. Указывается начало и конец моста.

Бровки насыпи подхода относительно оси наносятся параллельными линиями как продолжение границ моста. Положение подошвы откоса относительно бровки рассчитывается в соответствии с высотой насыпи и заложением откоса. На откосе с высотой больше ограничивающей отметки Нп наносится берма шириной 4 м. Показывается укрепление откоса.

Очертание струенаправляющей дамбы наносится по данным расчета, выполненного в § 3.3. Показывается пикетное положение корня дамбы. У подошвы речного откоса показывается рисберма (упор укрепления откоса монолитным бетоном и сборными плитами).

При наличии срезки поймы показывают ширину срезки и длину по данным расчета. Ширина равна разности ширины русла под мостом и бытовой ( ). Длина срезки равна (3 4) .

В основной надписи (рис. 2.6.16 ) в графе 3 записывают «Проект мостового перехода», в графе 4 – «План мостового перехода», М1:1000 или М1:500. план мостового перехода на основе рассмотренных ранее примеров приведен на рисунке 3.4.6.

Рисунок 3.4.6 План мостового перехода

Литература

1. ТКП 45-3.03-19 (2006) – Автомобильные дороги. Нормы проектирования. – Минск, 2006.

2. ТКП 200-2009. Автомобильные дороги. Земляное полотно. Правила проектирования. – Минск, 2009.

3. ВСН 24-87. Определение максимальных расходов талых и ливневых вод на малых водотоках БССР. Миндорстрой БССР. 1987г. – 15 с.

4. ТКП 45-3.03-232-2011 (02250) – Мосты и трубы. Строительные нормы проектирования. – Минск, 2011.

5. Типовой проект Б3.008.1-2.08. Трубы железобетонные диаметром 500-2000 м для водопропускных сооружений на автомобильных дорогах. Минск. 2008.

6. Типовой проект Б3.503.1-8.04 «Укрепление водопропускных сооружений на автомобильных дорогах». Минск, 2004.

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ — конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Расчет укрепления откосов насыпи

  • О нас
  • Услуги
  • Портфолио
  • Сотрудничество
  • +7 (995) 505-49-55

Какая задача стояла перед инженером?

Проектом реконструкции предусматривается возведение земляного полотна на участке со слабым основанием, представленным суглинками различной консистенции, с примесями органических веществ. Требуется оценить устойчивость, вероятные деформации конструкции, при этом стоит принять во внимание неоднородность инженерно-геологических условий, а также высокий расчетный уровень высоких вод.

Геологические условия

Для моделирования насыпи и грунтового основания принят поперечный профиль с наихудшими грунтами в основании – ПК21+30.
Ширина земляного полотна поверху – 22,72м, высота (по оси, с КДО) – 20,25м, заложение 1:1,5÷1:2,5. Ширина проезда – 16,0м.

Расчетный уровень паводковых высоких вод на отметке 141.6 (р. Пенза). Грунт насыпи – песок мелкий.
Наименование и мощность грунтов на ПК21+30 (по скважине 13):
1) ИГЭ10 Песок мелкий светло-коричневый, серый, маловлажный, с маломощными прослоями суглинка, средней плотности – 0,7м;

2) ИГЭ8 Суглинок серый, песчанистый, тяжелый, мягкопластичный, с примесью органических веществ, с маломощными прослоями песка – 2,2м;

3) ИГЭ12 Песок мелкий светло-коричневый, серый, темно-серый, водонасыщенный, с редким включением дресвы и щебня кристаллических пород, с маломощными прослоями суглинка, средней плотности – 2,6м;

4) ИГЭ14 Глина серая, песчанистая, легкая, тугопластичная, с примесью органических веществ, слюдистая, с тонкими прослоями пылеватого песка – 2,0м;

5) ИГЭ15 Глина серая, песчанистая, легкая, полутвердая, с примесью органических веществ, слюдистая, с тонкими прослоями пылеватого песка – 13,5м.

Геотехнический расчет осадки и устойчивости насыпи

Численный анализ деформаций и устойчивости насыпи выполнен при помощи программного комплекса геотехнических расчетов PLAXІS 2D по методу конечных элементов (МКЭ).

Обоснование основано на расчетной оценке несущей способности основания, прогноза суммарной осадки и устойчивости. Расчеты проводились в соответствии с положениями действующих документов:

1. СП 34.13330.2012 Автомобильные дороги» (изменение 1);

2. СП 116.13330.2012 (СНиП 22-02-2003) «Инженерная защита территорий, зданий и сооружений от опасных геологических процессов. Основные положения»;

3. Пособие по проектированию земляного полотна автомобильных дорог на слабых грунтах. Издание официальное. Минтранс России, ФДА, Москва. 2004;

4. Пособие по проектированию земляного полотна автомобильных дорог на слабых грунтах (к СНиП 2.05.02-85). Союздорнии Минтрансстроя. — М.: Стройиздат. 1989;

5. ОДМ 218.5.003-2010 «Рекомендации по применению геосинтетических материалов при строительстве и ремонте автомобильных дорог» ФДА, Москва;

6. ГОСТ Р 52748-2007 «Автомобильные дороги общего пользования. Нормативные нагрузки, расчетные схемы нагружения, габариты приближения»;

7. ГОСТ Р 32960-2014 «Дороги автомобильные общего пользования. Нормативные нагрузки. Расчетные схемы нагружения»;

8. ОДМ 218.3.032-2013 «Методические рекомендации по усилению конструктивных элементов автомобильных дорог пространственными георешетками (геосотами)».

При создании геометрической модели грунтовый массив разбивается на сеть 15 узловых треугольных изопараметрических конечных элементов, в которых перемещения определяются во всех узлах, а напряжения (вычисляются по методу К.Терцаги) – в 12 точках. Расчет больших деформаций модели с учетом изменения узловых координат ведется в обновляемой сети элементов (на каждом шаге нагружения, по мере выполнения вычислений) по методу, известном как «модифицированная формулировка Лагранжа» (Updated Lagrangian Formulation) (Bathe, 1982) с возможностью оперативного перерасчета давления вод (учитывается снижение эффективного веса грунтов в воде (или ниже УГВ) и изменение их объема). Граница активной (сжимаемой) толщи грунтов основания определена как половина ширины насыпи понизу. Грунтовая модель в данном расчете – упругопластическая, Кулона-Мора. Нагрузка от транспортных средств, учитываемая в расчетах устойчивости насыпи приведена к равномерно распределенной 45кН/м 2 на проезжую часть автодороги в соответствии с [6]. Согласно п.4.3.2 [7] при расчетах осадки насыпи в качестве временной подвижной нагрузки следует принимать нагрузку АК, приведенную к эквивалентной равномерно распределенной нагрузке на верх земляного полотна q АК интенсивностью, кПа:

q АК = (7,4 ∙ n / B ЗП) ∙ K =18,18

Kгде n — число полос движения (4);

B ЗП — ширина земляного полотна поверху, м (средняя – 22,8);

К — класс нагрузки АК (14).

Моделирование армирующей геосинтетики в PLAXIS осуществляется с помощью параметра нормальной (осевой) жесткости ЕА. Осевая жесткость определяется отношением приращения силы, приложенной к материалу, к произошедшему под воздействием этой силы перемещению.

В соответствии с п. 8а [5] требуемая степень консолидации UТР (в рассматриваемом случае – 90%) при расчете сроков консолидации армированной насыпи может быть снижена до значения 0,9хUТР = 81%.

В общем виде устойчивость сооружения определяется коэффициентом устойчивости, представляющим собой отношение максимально возможной прочности грунта τпред к минимальному значению, необходимому для обеспечения равновесия τдейств: Куст = τпред / τдейств

Если формулу представить в виде стандартного условия Кулона, то она примет вид: Куст = ( σ n tg φ’ + c ) / ( σ n tg φ r + cr),

где c и φ’ – исходные параметры прочности и σ n – фактическое нормальное напряжение; cr и φ r – параметры прочности, сниженные в ходе расчета до минимальных значений, достаточных для поддержания равновесия.

Метод снижения прочности (SRM – shear reduction method) по принципу расчета схож с методом Р.Р. Чугаева, известном в гидротехническом строительстве, реализован в программах, работающих на основе метода конечных элементов и конечных разностей (Plaxis, GEO5, Phase2, FLAC). Прогноз разрушения осуществляется путем одновременного понижения обоих показателей сдвиговой прочности: cr = с / К уст и φ r = φ / К уст ,

Читать еще:  Рейка для монтажа откосов

где Куст – коэффициент снижения прочности, соответствующий коэффициенту устойчивости в момент разрушения.

Последовательность расчета следующая: коэффициенту снижения прочности ( Куст) присваивается значение Куст=1. В ходе расчета Куст увеличивается, при этом сопротивление сдвигу и деформация оцениваются на каждом этапе до наступления разрушения. Результаты вычислений приводятся в виде графиков, на которых показано влияние коэффициента снижения прочности ( Куст) на смещение контрольной точки (узла сетки конечных элементов). Критерий разрушения модели определяется условием Кулона-Мора. Если в результате конечно-элементного расчета будет получено решение для последнего устойчивого состояния откоса, то график расчетов примет горизонтальное положение и коэффициент снижения прочности будет соответствовать коэффициенту устойчивости Куст. Согласно п.3.38 [3], [4] требуемый коэффициент устойчивости принят равным 1,3.

«АВТОМОБИЛЬНЫЕ ДОРОГИ. СТРОИТЕЛЬНЫЕ НОРМЫ И ПРАВИЛА. СНиП 2.05.02-85» (утв. Постановлением Госстроя СССР от 17.12.85 N 233) (ред. от 08.06.95)

НАСЫПИ

6.22. Для насыпей во всех условиях разрешается без ограничений применять грунты и отходы промышленности, мало меняющие прочность и устойчивость под воздействием погодно-климатических факторов. Грунты, а также отходы промышленного производства, изменяющие прочность и устойчивость под воздействием этих факторов и нагрузок с течением времени, в том числе особые грунты, допускается применять с ограничениями, обосновывая в проекте их применение результатами испытаний. В необходимых случаях следует предусматривать специальные конструктивные меры по защите неустойчивых грунтов от воздействия погодно-климатических факторов.

При использовании крупнообломочных грунтов следует предусматривать выравнивающий слой между насыпью и дорожной одеждой толщиной не менее 0,5 м из грунта с размерами обломков не более 0,2 м.

6.23. На сопряжении с мостами насыпи на длине поверху не менее высоты насыпи плюс 2 м (считая от устоя) и понизу не менее 2 м необходимо проектировать из непучинистых дренирующих грунтов.

6.24. Насыпи следует проектировать с учетом несущей способности основания. Основания разделяются на прочные и слабые.

К слабым следует относить основания, в которых в пределах активной зоны имеются слои слабых грунтов мощностью не менее 0,5 м (п.6.7).

Примечание. Мощность активной зоны следует принимать ориентировочно равной ширине насыпи понизу.

В случае, если слои слабых грунтов располагаются на глубинах, больших ширины насыпи понизу, а также при насыпях высотой более 12 м мощность активной зоны необходимо устанавливать расчетом.

6.25. Крутизну откосов насыпей на прочном основании следует назначать в соответствии с табл. 23.

6.26. Крутизну откосов насыпей высотой до 3 м на дорогах I — III категорий следует назначать с учетом обеспечения безопасного съезда транспортных средств в аварийных ситуациях, как правило, не круче 1 : 4, а для дорог остальных категорий при высоте откоса насыпи до 2 м — не круче 1 : 3. На ценных землях допускается увеличение крутизны откосов до предельных значений, приведенных в табл. 23, с разработкой мероприятий по обеспечению безопасности движения.

6.27. Приведенная в пп. 6.25 и 6.26 крутизна откосов насыпей предполагает их укрепление методом травосеяния или одерновки. При применении двух более капитальных методов укрепления крутизна может быть увеличена при соответствующем технико-экономическом обосновании.

Грунты насыпиНаибольшая крутизна откосов при высоте откоса насыпи, м
До 6До 12
в нижней части (0-6)в верхней части (6-12)
Глыбы из слабовыветривающихся пород1:1 — 1:1,31:1,3 — 1:1,51:1,3 — 1:1,5
Крупнообломочные и песчаные за исключением мелких и пылеватых песков)1:1,51:1,51:1,5
Песчаные мелкие и пылеватые, глинистые и лессовые1:1,5
1:1,75
1:1,75
1:2
1:1,5
1:1,75

Примечания: 1. Под чертой даны значения для пылеватых разновидностей грунтов во II и III дорожно-климатических зонах и для одноразмерных мелких песков.

2. Высота откоса насыпи определяется разностью отметок верхней и нижней бровок откоса. При наличии косогорности высота откоса насыпи определяется разностью отметок верхней и нижней бровок низового откоса.

3. Наибольшую крутизну откоса насыпей их мелких барханных песков в районах с засушливым климатом следует назначать 1: 2 независимо от высоты.

6.28. При слабых основаниях, использовании откосах насыпей глинистых грунтов повышенной влажности, а также подтопляемых насыпей крутизна откосов назначается на основе расчетов или проверяется расчетом возможность применения типового поперечного профиля.

6.29. При проектировании резервов грунта фактический объем требуемого грунта для насыпей Vf следует определять по формуле

где V — объем проектируемой насыпи, м3 ;

k1- коэффициент относительного уплотнения (отношение требуемой плотности грунта в насыпи, устанавливаемой с учетом табл. 22, к его плотности в резерве или карьере, устанавливаемой при изысканиях). Ориентировочно коэффициент относительного уплотнения допускается принимать по табл. 14 обязательного приложения 2.

6.30. К насыпям на слабых основаниях предъявляются дополнительные требования:

боковое выдавливание слабого грунта в основании насыпи в период эксплуатации должно быть исключено;

интенсивная часть осадки основания должна завершиться до устройства покрытия (исключение допускается при применении сборных покрытий в условиях двухстадийного строительства);

упругие колебания насыпей на торфяных основаниях при движении транспортных средств не должны превышать величины, допустимой для данного типа дорожной одежды.

Прогноз устойчивости и осадки основания насыпи, а также ее упругих колебаний следует осуществлять на основе расчетов.

Примечания: 1. За завершение интенсивной части осадки допускается принимать момент достижения 90 %-ной консолидации основания или интенсивности осадки не более 2,0 см/год при дорожных одеждах капитального типа и 80 %-ной консолидации или интенсивности осадки не более 5,0 см/год при дорожных одеждах облегченного типа.

2. Допустимую интенсивность осадки разрешается уточнять на основе опыта эксплуатации дорог в тех или иных природных условиях.

6.31. При проектировании насыпей из грунтов, влажность которых превышает допустимую (табл. 12 обязательного приложения 2), необходимо предусматривать мероприятия, обеспечивающие необходимую устойчивость земляного полотна. К числу таких мероприятий относятся:

осушение грунтов как естественным путем, так и обработкой их активными веществами типа негашеной извести, активных зол уноса и др.;

ускорение консолидации грунтов повышенной влажности в нижней части насыпи (горизонтальные дренажи из зернистых или синтетических материалов и др.) и предупреждение деформаций насыпей, связанных с их расползанием (уположение откосов и защита их от размыва, устройство горизонтальных прослоек из зернистых или синтетических материалов и т. д.). Устройство покрытий дорожных одежд капитального и облегченного типов на таких насыпях предусматривают после завершения консолидации грунта насыпи.

При влажности грунтов ниже 0,9 оптимальной следует предусматривать в проекте специальные меры по их уплотнению (доувлажнение, уплотнение более тонкими слоями и т. п.)

6.32. При проектировании насыпей с высотой откосов более 12 м в зависимости от конкретных условий с целью обеспечения устойчивости насыпи и ее откосов следует определять расчетом:

возможную осадку насыпи за счет ее доуплотнения под действием собственного веса и ход этой осадки во времени;

очертание поперечного профиля, обеспечивающее устойчивость откосов насыпи;

безопасную нагрузку на основание, исключающую процессы бокового выдавливания грунта;

величину и ход во времени осадки основания насыпи за счет его уплотнения под нагрузкой от веса насыпи.

6.33. Высоту насыпи на участках дорог, проходящих по открытой местности, по условию снегонезаносимости во время метелей следует определять расчетом по формуле

, (2)

где h — высота незаносимой насыпи, м;

hs- расчетная высота снегового покрова в месте, где возводится насыпь, с вероятностью превышения 5 %, м. При отсутствии указанных данных допускается упрощенное определение hs с использованием метеорологических справочников;

Дельтаh-возвышение бровки насыпи над расчетным уровнем снегового покрова, необходимое для ее независимости, м.

Примечания: В случаях, когда Дельтаh оказывается меньше возвышения бровки насыпи над расчетным уровнем снегового покрова по условиям снегоочистки Дельтаhsc (см. ниже), в формулу (2) вместо Дельтаh вводится Дельтаhsc.

Возвышение бровки насыпи над расчетным уровнем снегового покрова необходимо назначать, м, менее

1,2 — для дорог — I категории;

0,7 — для дорог — II категории;

0,6 — для дорог — III категории;

0,5 — для дорог — IV категории;

0,4 — для дорог — V категории.

6.34. В районов, где расчетная высота снегового покрова превышает 1 м, необходимо проверять достаточность возвышения бровки насыпи над снеговым покровом по условию беспрепятственного размещения снега, сбрасываемого с дороги при снегоочистке, используя формулу

,(3)

где Дельтаhsc — возвышение бровки насыпи над расчетным уровнем снегового покрова по условиям снегоочистки, м;

b -ширина земляного полотна, м;

a — расстояние отбрасывания снега с дороги снегоочистителем, м; для дорог с регулярным режимом зимнего содержания допускается принимать а = 8 м.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector