Stroi-doska.ru

Строй Доска
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Площадь трапеции через откосы

Площадь трапеции

Трапеция – это четырехугольник, у которого две стороны параллельны друг другу. Высотой трапеции называют линию, перпендикулярную основаниями, для удобства ее часто проводят из тупого угла трапеции на большее основание. Средняя линия трапеции – это линия, которая параллельна основаниям, и разделяет боковые стороны ровно пополам. Среднюю линию трапеции можно найти средним арифметическим оснований – сложив их и разделив на два.

Площадь трапеции в самом простом виде – это произведение средней линии на высоту, или если раскрыть формулу средней линии, то произведение полусуммы оснований на высоту.

Доказательством этой формулы будет служить представление площади трапеции, как суммы площадей двух треугольников полученных при проведении диагонали.

Площади этих треугольников будут равны соответственно и (для того, чтобы нарисовать высоту во втором треугольнике, необходимо будет продлить основание b ). Площадь трапеции будет равна сумме полученных выражений, где мы вынесем высоту за скобку, и получим искомую формулу:

Вывести формулу, для того чтобы вычислить площадь трапеции через стороны, можно с помощью метода подстановки.

Проведя две высоты в трапеции, получаем по бокам прямоугольные треугольники с известными гипотенузами и неизвестными катетами x и y . Таким образом x+y=d-b , y=d-b-x .
Одинаковый катет у обоих треугольников – высота, которую мы ищем. Через теорему Пифагора в прямоугольных треугольниках выражаем высоту и . Приравнивая, получаем a 2 -x 2 =c 2 -y 2 или x 2 -y 2 =a 2 -c 2 .
x 2 -(d-b-x) 2 =a 2 -c 2 — Подставляем вместо х полученное выше выражение d-b-y .
x 2 -d 2 +bd+dx-b 2 +bd-bx-x 2 +dx-bx=a 2 -c 2 — Раскрываем скобки.
x 2 -d 2 +2bd+2dx-b 2 -2bx-x 2 =a 2 -c 2 — Приводим подобные слагаемые.
2dx-2bx=a 2 -c 2 +d 2 +b 2 -2bd — Переносим все вправо, оставляя слева только y .
2x(d-b)=a 2 -c 2 +(d-b) 2 — Выносим общие множители.

Подставляем обратно y в формулу высоты .
Формула площади трапеции через стороны будет выглядеть так:

Площадь трапеции через диагонали и угол между ними считается условным делением трапеции на четыре треугольника, точно также как и площадь любого произвольного четырехугольника.

Площадь равнобедренной трапеции можно найти еще одним способом, если даны угол при основании и радиус вписанной окружности. Дело в том, что центр вписанной окружности, откуда берет свое начало радиус, находится точно в центре трапеции, таким образом, приравнивая высоту и диаметр окружности (либо удвоенный радиус). Также одно из свойств трапеции, описанной вокруг окружности – это равенство суммы оснований и суммы боковых сторон, значит, мы сможем найти среднюю линию, зная боковые стороны. Проведя высоту, из прямоугольного треугольника получаем боковую сторону и среднюю линию
Тогда площадь трапеции равна

Площадь ромба по 2 диагоналям. Площадь ромба

Несмотря на то, что математика – царица наук, а арифметика – царица математики, самую большую сложность в изучении у школьников вызывает геометрия. Планиметрия – раздел геометрии, который изучает плоские фигуры. Одной из таких фигур является ромб. Большинство задач по решению четырехугольников сводятся к нахождению их площадей. Систематизируем известные формулы и различные способы расчета площади ромба.

Ромб – это параллелограмм, все четыре стороны которого равны. Напомним, что у параллелограмма есть четыре угла и четыре попарно параллельные равные стороны. Как любой четырехугольник, ромб имеет ряд свойств, которые сводятся к следующим: при пересечении диагонали образуют угол, равный 90 градусов (AC ⊥ BD), точка пересечения делит каждую на два равных отрезка. Диагонали ромба также являются биссектрисами его углов (∠DCA = ∠BCA, ∠ABD = ∠CBD и т. д.). Отсюда следует, что они делят ромб на четыре равных прямоугольных треугольника. Сумма длин диагоналей, возведенных во вторую степень, равна длине стороны во второй степени, умноженной на 4, т.е. BD 2 + AC 2 = 4AB 2 . Существует множество методов, используемых в планиметрии для расчета площади ромба, применение которых зависит от исходных данных. Если известны длина стороны и любой угол, можно воспользоваться следующей формулой: площадь ромба равна квадрату стороны, умноженному на синус угла. Из курса тригонометрии известно, что sin (π – α) = sin α, а значит, в расчетах можно использовать синус любого угла – как острого, так и тупого. Частным случаем является ромб, у которого все углы прямые. Это квадрат. Известно, что синус прямого угла равен единице, поэтому площадь квадрата равна длине его стороны, возведенной во вторую степень.

Если величина сторон неизвестна, воспользуемся длиной диагоналей. В этом случае площадь ромба равна половине произведения большой и малой диагоналей.

При известной длине диагоналей и величине любого угла площадь ромба определяется двумя способами. Первый: площадь – это половина квадрата большей диагонали, умноженная на тангенс половины градусной меры острого угла, т.е. S = 1/2*D 2 *tg(α/2), где D – большая диагональ, α – острый угол. Если вам известен размер меньшей диагонали, воспользуемся формулой 1/2*d 2 *tg(β/2), где d – меньшая диагональ, β – тупой угол. Напомним, что мера острого угла меньше 90 градусов (меры прямого угла), а тупой угол соответственно – больше 90 0 .

Читать еще:  Угол естественного откоса круп

Площадь ромба можно отыскать, используя длину стороны (напомним, все стороны у ромба равны) и высоты. Высота – это перпендикуляр, опущенный на противоположную углу сторону или на ее продолжение. Чтобы основание высоты располагалось внутри ромба, ее следует опускать из тупого угла.

Иногда в задаче требуется отыскать площадь ромба, исходя из данных, относящихся к вписанной окружности. В этом случае необходимо знать ее радиус. Существуют две формулы, которыми можно воспользоваться для расчета. Итак, чтобы ответить на поставленный вопрос, можно удвоить произведение стороны ромба и радиуса вписанной окружности. Другими словами, необходимо умножить диаметр вписанной окружности на сторону ромба. Если в условии задачи представлена величина угла, то площадь находится через частное между квадратом радиуса, умноженном на четыре, и синусом угла.

Как видите, существует множество способов для нахождения площади ромба. Конечно, чтобы запомнить каждый из них, потребуется терпение, внимательность и, конечно же, время. Но в дальнейшем вы сможете легко выбрать метод, подходящий для вашей задачи, и убедитесь, что геометрия – это несложно.

Площадь геометрической фигуры — численная характеристика геометрической фигуры показывающая размер этой фигуры (части поверхности, ограниченной замкнутым контуром данной фигуры). Величина площади выражается числом заключающихся в нее квадратных единиц.

Формулы площади треугольника

  1. Формула площади треугольника по стороне и высоте
    Площадь треугольника равна половине произведения длины стороны треугольника на длину проведенной к этой стороне высоты
  2. Формула площади треугольника по трем сторонам и радиусу описанной окружности
  3. Формула площади треугольника по трем сторонам и радиусу вписанной окружности
    Площадь треугольника равна произведения полупериметра треугольника на радиус вписанной окружности.
    где S — площадь треугольника,
    — длины сторон треугольника,
    — высота треугольника,
    — угол между сторонами и,
    — радиус вписанной окружности,
    R — радиус описанной окружности,

Формулы площади квадрата

  1. Формула площади квадрата по длине стороны
    Площадь квадрата равна квадрату длины его стороны.
  2. Формула площади квадрата по длине диагонали
    Площадь квадрата равна половине квадрата длины его диагонали.
    S =12
    2

    где S — Площадь квадрата,
    — длина стороны квадрата,
    — длина диагонали квадрата.

Формула площади прямоугольника

    Площадь прямоугольника равна произведению длин двух его смежных сторон

где S — Площадь прямоугольника,
— длины сторон прямоугольника.

Формулы площади параллелограмма

  1. Формула площади параллелограмма по длине стороны и высоте
    Площадь параллелограмма
  2. Формула площади параллелограмма по двум сторонам и углу между ними
    Площадь параллелограмма равна произведению длин его сторон умноженному на синус угла между ними.

где S — Площадь параллелограмма,
— длины сторон параллелограмма,
— длина высоты параллелограмма,
— угол между сторонами параллелограмма.

Формулы площади ромба

  1. Формула площади ромба по длине стороны и высоте
    Площадь ромба равна произведению длины его стороны и длины опущенной на эту сторону высоты.
  2. Формула площади ромба по длине стороны и углу
    Площадь ромба равна произведению квадрата длины его стороны и синуса угла между сторонами ромба.
  3. Формула площади ромба по длинам его диагоналей
    Площадь ромба равна половине произведению длин его диагоналей. где S — Площадь ромба,
    — длина стороны ромба,
    — длина высоты ромба,
    — угол между сторонами ромба,
    1 , 2 — длины диагоналей.

Формулы площади трапеции

    Формула Герона для трапеции

Где S — Площадь трапеции,
— длины основ трапеции,
— длины боковых сторон трапеции,

– это параллелограмм, у которого все стороны равны.

Ромб с прямыми углами называется квадратом и считается частным случаем ромба. Найти площадь ромба можно различными способами, используя все его элементы – стороны, диагонали, высоту. Классической формулой площади ромба считается расчет значения через высоту.

Пример расчета площади ромба по этой формуле очень прост. Необходимо только подставить данные и высчитать площадь.

Площадь ромба через диагонали


Диагонали ромба пересекаются под прямым углом и в точке пересечения делятся пополам.

Формула площади ромба через диагонали представляет собой произведение его диагоналей, разделенное на 2.

Рассмотрим пример расчета площади ромба через диагонали. Пусть дан ромб с диагоналями
d1 =5 см и d2 =4. Найдем площадь.

Формула площади ромба через стороны подразумевает и применение других элементов. Если в ромб вписана окружность, то площадь фигуры можно просчитать по сторонам и ее радиусу:

Пример расчета площади ромба через стороны также весьма прост. Требуется только просчитать радиус вписанной окружности. Его можно вывести из теоремы Пифагора и по формуле .

Площади ромба через сторону и угол


Формула площади ромба через сторону и угол используется очень часто.

Рассмотрим пример расчета площади ромба через сторону и угол.

Задача: Дан ромб, диагонали которого равны d1 =4 см,d2 =6 см. Острый угол равен α = 30°. Найдите площадь фигуры через сторону и угол.
Для начала найдем сторону ромба. Используем для этого теорему Пифагора. Мы знаем, что в точке пересечения диагонали делятся пополам и образуют прямой угол. Следовательно:
Подставим значения:
Теперь мы знаем сторону и угол. Найдем площадь:

– это параллелограмм , у которого все стороны равны, то для него действуют все те же формулы, как и для параллелограмма, включая формулу нахождения площади через произведение высоты и стороны .

Площадь ромба можно найти, также зная его диагонали . Диагонали делят ромб на четыре абсолютно одинаковых прямоугольных треугольника . Если мы их рассортируем, так чтобы получить прямоугольник , то его длина и ширина будут равны одной целой диагонали и половине второй диагонали. Поэтому площадь ромба находится умножением диагоналей ромба, сокращенных на два (как площади получившегося прямоугольника).

Если в распоряжении только угол и сторона , то можно вооружиться диагональю в качестве помощника и начертить ее напротив известного угла. Тогда она разделит ромб на два конгруэнтных треугольника, площади которых в сумме дадут нам площадь ромба. Площадь каждого из треугольников будет равна половине произведения квадрата стороны на синус известного угла, как площадь равнобедренного треугольника . Поскольку таких треугольников два, то коэффициенты сокращаются, оставив только сторону во второй степени и синус:

Если внутри ромба вписать окружность , то его радиус будет относиться к стороне под углом 90° , что значит, что удвоенный радиус будет равен высоте ромба . Подставив вместо высоты h=2r в предыдущую формулу, получим площадь S=ha=2ra

Если же вместе с радиусом вписанной окружности, дана не сторона, а угол, то следует сначала найти сторону, проведя высоту таким образом, чтобы получить прямоугольный треугольник с заданным углом. Тогда сторона a может быть найдена из тригонометрических отношений по формуле . Подставляя это выражение в ту же стандартную формулу площади ромба, выходит

Ромб — это частный случай параллелограмма. Он представляет собой плоскую четырехугольную фигуру, в которой все стороны равны. Данное свойство определяет то, что у ромбов параллельны противоположные стороны и равны противолежащие углы. Диагонали ромба пресекаются под прямым углом, точке их пересечения приходится на середину каждой диагонали, а углы из который они выходят делятся пополам. То есть они диагонали ромба являются биссектрисами углов. Исходя из приведенных определений и перечисленных свойств ромбов их площадь может быть определена различными способами.

1. Если известны обе диагонали ромба AC и BD, то площадь ромба может быть определена как половина произведения диагоналей.

где AC, BD — длина диагоналей ромба.

Чтобы понять почему это так, можно мысленно вписать в ромб прямоугольник таким образом, чтобы стороны последнего были перпендикулярны диагоналям ромба. Становится очевидным, что площадь ромба будет равна половине площади вписанного данным образом в ромб прямоугольника, длина и ширина которого будут соответствовать величине диагоналей ромба.

2. По аналогии с параллелепипедом площадь ромба может быть на найдена как произведение его стороны, на высоту перпендикуляра с опущенного к данной стороне с противолежащей стороны.

где а — сторона ромба;
h — высота перпендикуляра, опущенного на данную сторону.

3. Площадь ромба также равна квадрату его стороны, умноженному на синус угла α .

где, a — сторона ромба;
α — угол между сторонами.

4. Также площадь ромба может быть найдена через его сторону и радиус вписанной в него окружности.

где, a — сторона ромба;
r — радиус вписанной в ромб окружности.

Интересные факты
Слово ромб произошло от древнегреческого rombus, что в переводе означает «бубен». В те времена бубны действительно имели ромбовидную форму, а не круглую, как мы привыкли видеть их в настоящее время. С тех же времен произошло и название карточной масти «бубны». Очень широко ромбы различных видов используются в геральдике.

Как рассчитать площадь потолка

Прежде чем вы приступите к отделке потолка, вам необходимо определиться с его площадью , чтобы приобрести нужное количество материалов. Как рассчитать площадь потолка, исходя из его геометрии, мы разберемся в этой статье.

При любом виде отделки – будь то просто окраска, отделка плиткой или вы запланировали натяжной потолок, гипсокартонную многоуровневую конструкцию и прочие варианты отделки, вам следует определить площадь потолка комнаты.

Хорошо, если потолок имеет квадратную или прямоугольную форму, но зачастую его конфигурация представлена неправильной формой. Поэтому и расчет немного усложняется. Если вы параллельно хотите посчитать потребность в обоях на стены, то пример подсчета можете почитать в статье – рассчитать обои.

Предлагаю рассмотреть следующие возможные варианты конфигурации потолка:

  • Прямоугольная или квадратная;
  • Неправильная прямоугольная или квадратная форма сложной конфигурации;
  • Комната имеет трапециевидную форму;
  • Редко, но встречаются комнаты круглой формы;
  • Потолок планируется разно уровневый, возможно с криволинейной волной.

Главный принцип при подсчете – это деление сложного потолка на геометрические фигуры и вычисление их площади по формуле. Конечный результат – это сложение всех значений. А теперь более подробно на примерах рассмотрим эти варианты.

Как рассчитать площадь потолка комнаты

Приготовьте рулетку, карандаш, бумагу и пригласите в помощники кого-либо из домашних. Замеры выполняйте два раза для страховки от ошибки. Когда будете чертить и считать, то лучше тоже дважды проверяйте результаты подсчетов на калькуляторе.

Чертеж № 1

Проще всего вычислить площадь, если она имеет прямоугольную или квадратную формы. Итог равен произведению сторон, то есть ширину следует умножить на длину комнаты. Например, стороны помещения равны 3 и 5, 5 метра (чертеж№1). Площадь (S) рассчитывается умножением S=3х5,5м = 16,5м2.

Если помещение неправильной геометрической формы, но с прямыми углами, то принцип расчета сведен к разбивке плана потолка на отдельные элементы (чертеж№2).

Чертеж № 2

Для простоты расчета набрасываем эскиз или чертим чертеж с нанесением всех размеров в масштабе на бумаге.

Линейкой разбиваем чертеж плана комнаты на сегменты и рассчитываем каждый.

S равна: (3х2) х 2 + 2х4 =20м2

Теперь рассмотрим, как рассчитать площадь потолка, если один или два угла не прямые. Тогда мы имеем дело с трапецией. Она может быть прямоугольной – это, когда один угол прямой, а второй острый, или равнобедренной.

Чертеж № 3

Чертим чертеж с нанесением всех размеров в масштабе (чертеж №3). Площадь трапеции вычисляем по формуле – сумма параллельных сторон, деленная на 2 и умноженная на высоту.

Для примера возьмем прямоугольную трапецию. Рассчитать площадь потолка в квадратных метрах будет просто: S = (4+8):2=6х3=18м2.

Многие разбивают фигуру на прямоугольник и треугольник, подсчитывают площадь обеих фигур и складывают результат. Он будет тем же. Давайте проверим.

Площадь прямоугольника = 4х3=12м2

Площадь треугольника прямоугольного = (3х4):2=6м2

Итого равно: 12м2+6м2=18м2, то есть, разницы нет в том, как вы произведете вычисления.

Технически подкованным людям рассчитать площадь потолка проще, чем гуманитариям, врачам, музыкантам, так как не раз сталкивался с этим вопросом, помогал в подсчетах, поэтому и родилась эта статья.

Зато эти профессии хорошо делают работу согласно своему образованию и помогают уже «технарям». Отвлеклись, идем дальше.
Предположим надо рассчитать площадь потолка в комнате прямоугольной формы, но со скошенным углом.

Чертеж № 4

Вычерчиваем чертеж, наносим размеры, делим поверхность на геометрические фигуры, как указано пунктиром на чертеже (чертеж№4) и приступаем к расчету.

У нас получилось два прямоугольника и один треугольник. Привожу пример расчета:

S прямоугольника №1= 4х1,7 м=6,8м2

S прямоугольника №2 = 3х1 м=3м2

S треугольника №3 = 1х1м:2=0,5м2

Итого площадь: 6,8 + 3+ 0,5 = 10,3м2

При круглом варианте комнаты (но это редко встречается) или полукруге на одной из сторон, рассмотрим, как рассчитать площадь потолка в этом случае. Опять же по формуле площади круга – πr2.

Если у вас радиус, например, равен 3,5м, то S = 3,14 х 3,5 х 3,5 = 38,5м2.

При сложной конструкции в несколько уровней или, если перепад по высоте оформлен волнообразной линией, да еще и с разной кривизной, рассчитать, казалось бы, сложно.

Проекция горизонтальной части потолка равняется площади пола помещения. А площадь вертикальных уступов рассчитывается по одной из вышеприведенных методик. Но мы рассматриваем плоский вариант, поэтому расчет гипсокартонных многоуровневых конструкций тема отдельной статьи.

Бывают помещения с колоннами, например, тогда от общей площади потолочной поверхности следует вычесть суммарную площадь всех колонн. Площадь колонны рассчитываем как произведение ее сторон, а затем умножаем на количество штук.

Встречаются разные по конфигурации помещения, и принцип того, как рассчитать площадь потолка мы разобрали. Старайтесь этот подсчет выполнить как можно точнее, так как следующий этап – это приобретение материалов.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector