Stroi-doska.ru

Строй Доска
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

От чего зависит величина угла естественного откоса

8.4.2. Определение угла естественного откоса грунтов

Углом естественного откоса φ, град., называется угол, при котором неукрепленный откос песчаного грунта сохраняет равновесие или угол наклона поверхности свободно насыпанного грунта к горизонтальной плоскости.

Определение угла естественного откоса имеет важное значение при проектировании грунтовых сооружений: насыпных и намывных плотин, дорожных насыпей, дамб обвалования, хвостохранилищ, а также для оценки устойчивости естественных откосов и для проведения мероприятий по их укреплению.

В тех случаях, когда сопротивление сдвигу частиц определяется лишь силами трения, угол естественного откоса совпадает с углом внутреннего трения (φ = φ). Однако в реальных грунтах сопротивление сдвигу зависит не только от сил трения, но также от зацепления частиц и других факторов, влияющих на φ, т. е.:

где φТ составляющая за счет трения; φз – то же’ за счет зацепления; φс – то же за счет среза частиц.

Составляющая φТ зависит от минерального состава частиц, наличия поверхностных пленок и др., φз – от шероховатости поверхности и плотности упаковки частиц, а φс – от окатанности и формы частиц грунта. Поэтому значения φ и φ обычно различаются, особенно для плотных и неоднородных по структуре песков. Однако угол естественного откоса φ является легко определяемой и удобной характеристикой прочности несвязных грунтов. Способ применяется только для приближенного определения величины внутреннего трения сыпучих грунтов – чистых песков. В чистых песках приближенно величина угла внутреннего трения соответствует углу естественного откоса, т. е. углу, при котором неукрепленный откос песчаного грунта является устойчивым [50].

Угол естественного откоса определяют на приборе УВТ (рис. 8.44), который состоит из металлического столика-поддона, обоймы и резервуара. Поддон установлен на трех опорах и перфорирован отверстиями диаметром 0,8–1 мм для водонасыщения песка. Шкала, укрепленная в центре столика-поддона, имеет деления от 5 до 45°, по которым определяется угол откоса.

Определение угла естественного откоса в воздушно-сухом состоянии. На столик устанавливают обойму, в которую через воронку насыпают песок до ее заполнения, слегка постукивая по обойме. Осторожно, стараясь не рассыпать песок, вертикально поднимают обойму и по вершине образовавшегося песчаного конуса берут отсчет по шкале.

Опыт повторяют 3 раза и рассчитывают среднее арифметическое показание, расхождение между повторными определениями не должно превышать 1 градус.

При определении угла естественного откоса песка под водой после заполнения обоймы песком резервуар наполняют водой и после полного насыщения пробы определяют угол естественного откоса вышеописанным способом.

Для предварительного назначения откосов котлованов и карьеров рекомендуется руководствоваться значениями углов, близкими к углам естественного откоса грунта, приведенными в табл. 8.61.

Угол естественного откоса насыпных грунтов

Угол естественного откоса φ, град

От чего зависит величина угла естественного откоса

Жанр: Технологии

Просмотров: 442

1.5 угол естественного откоса

Углом естественного откоса называют угол α, образуемый линией естественного откоса (отвала) сыпучего материала с горизонтальной плоскостью [11]. Величина угла естественного откоса зависит от сил трения,

Рис. 3 Схема устройства для измерения угла естественного откоса сыпучих материалов

возникающих при перемещении частиц сыпучего материала относительно друг друга, и сил сцепления между ними. Угол α может быть измерен с помощью простейшего устройства, изображенного на рис.

3. При определениях угла α исследуемый сыпучий материал выпускают из воронки 1 на горизонтальную площадку 2, в результате чего там образуется конус 3 из материала. Затем с помощью угломера измеряют угол наклона α образующей этого конуса к горизонту – это и будет угол естественного откоса исследованного материала. Угол α определяет подвижность сыпучего материала, его необходимо учитывать при конструировании лотков, течек, выпускных конических частей бункеров. Во всех случаях

следует принимать угол наклона поверхностей к горизонту, по которым стекает данный сыпучий материал, превосходящим по величине его угол естественного откоса.

Величина угла α зависит от состояния поверхности опорной площадки. Чем меньше шероховатость этой поверхности, тем меньше угол естественного откоса. Снижается значение угла α и в том случае, когда горизонтальная опорная поверхность вибрирует. Поэтому при проектировании бункеров и течек для малоподвижных с большим значением угла естественного откоса сыпучих материалов внутренние поверхности этих устройств шлифуют, а во время работы их с помощью вибраторов приводят в колебательное движение с весьма малыми амплитудами.

Читать еще:  Дурка как откос от армии

Поведение сыпучего материала в технологических процессах определяется его способностью оказывать сопротивление изменению объема, формы, нарушению целостности. Характерной особенностью сыпучих материалов является подвижность частиц относительно друг друга (сыпучесть) и способность перемещаться под действием внешней силы. Сыпучесть зависит от гранулометричеcкого состава материала, его влажности, степени уплотнения и проявляется по-разному (рис. 4).

Так, при насыпании сыпучего материала на горизонтальную поверхность из воронки (рис. 4, а) образуется конус с углом естественного откоса при основании. При удалении подпорной боковой стенки свод материала обрушивается, а свободная поверхность материала располагается под некоторым углом к горизонтальной плоскости (рис. 4, б).

В случае открытия отверстия в плоском днище бункера происходит частичное осыпание материала с образование свода (при малом диаметре отверстия) или кратера (рис. 4, в, г). При прекращении вращения полого барабана с засыпанным материалом свободная поверхность также образует некоторый угол с горизонтальной плоскостью (рис. 4, д).

Сыпучесть характеризуется косвенными показателями, среди которых наибольшее распространение получил угол естественного откоса αд. Широкое использование этого показателя при определении наклона стенок бункера, желобов объясняется простотой и надежностью его измерения.

Углом естественного откоса называется угол наклона образующей конуса сыпучего материала, отсыпанного без толчков и вибраций, к горизонтальной плоскости [3]. Эта характеристика связана одновременно с аутогезией, внутренним трением и плотностью частиц порошка и его гранулометрическим составом.

Наряду с углом естественного откоса различают угол обрушения αп, который характеризует положение поверхности откоса, образованной в результате сползания части сыпучего материала. Угол обрушения всегда больше угла естественного откоса. Угол обрушения служит важным параметром при проектировании транспортных средств и бункеров для хранения сыпучих материалов и наряду с этим применяется в научных исследованиях. В литературе имеются и другие названия этих параметров: угол естественного откоса – динамический угол откоса, угол трения движения, угол насыпания; угол обрушения – статический угол откоса, угол трения покоя.

Экспериментально углы естественного откоса и обрушения можно определить следующими методами:

1 Насыпкой из воронки на горизонтальную плоскость.

2 Высыпанием из емкости при открытии окна.

3 Образованием кратера при истечении через щель или отверстие.

4 Переворачиванием емкости, частично засыпанной материалом.

5 Вращением барабана полого или содержащего лопасть.

Методы 1, 2, 3 позволяют определить только один угловой параметр, методы 4, 5 – два.

Насыпную плотность сыпучего материала определяют путем взвешивания сыпучего материала в измерительном стакане.

Любая деформация сыпучего материала сопровождается сдвигом, т.е. скольжением частиц одна относительно другой. В отличие от жидкостей сыпучие материалы могут выдерживать определенные усилия сдвига. Связь между предельным сопротивлением τα и нормальным напряжением σα в плоскости

скольжения слоев выражается законом Кулона [7]

τα  c  f σα , (21)

где c – удельное сцепление частиц в сыпучем материале в Па; f – коэффициент внутреннего трения.

При σα = 0, с = τ0 , получим начальное сопротивление трения. Угол наклона линий, выражающих зависимость τα = f(σα), называется углом внутреннего трения. Зависимость между углом внутреннего трения и коэффициентом внутреннего трения следующая: f = tg ϕ.

При расчете сил трения сыпучего материала о стенки бункера и рабочие органы машин используется коэффициент внешнего трения сыпучего материала. Значения коэффициентов внутреннего и внешнего трения и соответствующих им углов, а также предельного сопротивления под нагрузкой и начального сопротивления сдвига определяют на специальных сдвиговых приборах. Однако динамическое поведение сыпучего материала нельзя оценить какой-либо одной характеристикой.

Для этой цели используют комплексные показатели, состоящие из совокупности физикомеханических характеристик. Согласно [1] для классификации сыпучих материалов применительно к процессам, связанным с их перемещением и обработкой, предлагается комплексный показатель связности, характеризующий способность сыпучего материала образовывать устойчивые вертикальные откосы

g ρн 1 − sin ϕ

В зависимости от величины hp все сыпучие материалы подразделяются на 3 класса: несвязные, связно текучие и связные. Каждый класс делится на две группы. Выбор типа оборудования должен производиться с учетом физико-механических свойств.

Их учет при расчете и выборе оборудования обеспечивает гарантированную переработку мелкодисперсных связных материалов и достаточный запас надежности при переработке несвязных материалов.

Выбор конструкции оборудования, машины или аппарата для хранения, транспортирования или переработки сыпучего материала зависит от его гранулометрического состава и физико-механических характеристик.

Содержание

Читать: Аннотация
Читать: Введение
Читать: 1 физико-механические свойства сыпучих материалов
Читать: 1.1 гранулометрический состав
Читать: 1.2 насыпная плотность
Читать: 1.3 влажность
Читать: 1.4 текучесть
Читать: 1.5 угол естественного откоса
Читать: 1.6 адгезия
Читать: 1.7 слеживаемость
Читать: 2 методы оценки качества смесей
Читать: 2.1 критерии качества смеси
Читать: 2.2 выбор необходимого числа проб для оценки качества смеси
Читать: 2.3 минимально допустимый вес пробы
Читать: 2.4 поверочный контроль качества готовой смеси
Читать: 2.5 техника отбора проб из смеси
Читать: 2.6 методы анализа проб
Читать: 3 свойства смесей сыпучих материалов
Читать: 3.1 случайность в свойствах исходных и конечных продуктов процессов смешивания
Читать: 3.2 определение свойств смеси сыпучих материалов
Читать: 3.3 экспериментальное определение сил сопротивления движению частиц в плотных слоях
Читать: 4 лабораторный практикум
Читать: Лабораторная работа № 1
Читать: Лабораторная работа № 2
Читать: Лабораторная работа № 3
Читать: Лабораторная работа № 4
Читать: Лабораторная работа № 5
Читать: Лабораторная работа № 6
Читать: Список литературы
Читать: Приложение

Читать еще:  Для чего нужны земляные откосы

Определение угла естественного откоса

Сыпучесть – способность насыпных и навалочных грузов перемещаться под действием сил тяжести или внешнего динамического воздействия. Сыпучесть груза характеризуется величиной угла естественного откоса и сопротивлением сдвигу.

Углом естественного откоса называют максимальный угол наклона откоса, не обладающего сцеплением (т.е. сыпучего) зернистого вещества. Это угол между горизонтальной плоскостью и образующей конуса.

Его величина зависит от рода груза, гранулометрического состава и влажности груза.

Различают угол естественного откоса в покое и в движении. Величина угла естественного откоса в покое больше, чем в движении. При воздействии на груз динамических нагрузок, особенно вибраций, величина угла может снижаться до нуля.

При перевозке грузов морем основной задачей является создание максимально устойчивого штабеля в трюме судна, центр тяжести которого находится в строго определенном месте и может быть использован в расчетах остойчивости судна. Создание такого штабеля выполняется методом выравнивания штабеля груза (штивка), недопущения создания крутых откосов, которые могут обвалится или даже закрепления поверхности штабеля.

Термин «штивка» означает любое, частичное или полное разравнивание поверхности гру­за в пределах грузового помещения.

Для достаточно точного расчета устойчивости штабеля требуется знание сопротивления сдвигу и угла откоса, однако, существующая методика расчета сопротивления сдвигу несколько сложна и не нашла широкого применения. Понимая это, Международная Морская Организация подготовила методику определения уровня штивки груза, опираясь только на величину Угла Естественного Откоса (УЕО) для грузов. не имеющих сцепления, метод основан на результатах практики перевозок балкерами и может использоваться, когда нет альтернативы. Методики определения УЕО можно найти в соответствующих разделах на нашем сайте.

Следует отметить что навалочные грузы, с точки зрения штивки, могут быть разделены на грузы, имею­щие сцепление и не имеющие сцепления. Грузы, имеющие сцепление, УЕО не характеризуются, перечень см. в соответствующем разделе.

До окончания погрузки грузов, не имеющих сцепления, следует определить, какими из нижеприведенных требований необхо­димо будет руководствоваться с учетом угла естественного откоса, оговариваемого на момент погрузки.

Не имеющие сцепления навалочные грузы с углом естественного откоса 30 граду­сов или менее

Это грузы, обладающие повышенной, подобной зерну, сыпучестью, следует осуществлять в соответствии с требованиями, регламентирующими перевозку зерно­вых грузов. Следует, однако, учитывать плотность груза при определении:

— размеров материала и крепежных устройств для продольных переборок и пере­борок в выгородках;

— влияния свободных поверхностей груза на остойчивость.

Не имеющие сцепления навалочные грузы с углом естественного откоса от 30 до 35 градусов включительно

Штивка вышеупомянутых грузов должна производиться в соответствии с ниже­следующими критериями:

— неровности на поверхности груза, измеряемые как расстояние по вертикали (rh) между самым высоким и самым низким уровнем, не должны превышать В/10, где В — ширина судна в метрах при максимально допустимом значении rh =1,5м;

— если представляется невозможным измерить rh, перевозка груза навалом воз­можна при условии применения штивочного оборудования во время погрузки.

Не имеющие сцепления навалочные грузы с углом естественного откоса более 35 градусов

Груз с углом естественного откоса более 35 градусов следует грузить с осторож­ностью, имея в виду предотвращение образования боковых откосов с крутыми склонами вне расштиванной поверхности в пределах грузового помещения. Штивку такого груза следует про­изводить таким образом, чтобы угол наклона вне разровненной поверхности был значительно меньше угла естественного откоса.

Рекомендованное ИМО определение угла естественного откоса мелкозернистых веществ выполняется «методом наклонного стола». Проводится в специализированных лабораториях с привязкой к порту погрузки.

Читать еще:  Как клеить вокруг откосов

Это испытание позволяет определять угол естественного откоса мелкозернистых веществ, не обладающих сцеплением (размер зерен менее 10 мм). Получаемые результаты могут использоваться при толковании соответствующих разделов Международного Кодекса Морской перевозки Навалочных Грузов применительно к рассматриваемым веществам.

Принцип испытания

При измерении угла естественного откоса с помощью настоящего метода поверхность вещества в ящике стола ИМО должна быть выровнена и быть параллельной основанию испытательного стола. Стол наклоняется без сотрясений до тех пор, пока не начнется массовое осыпание вещества, полученный угол фиксируется.

Определение угла естественного откоса сыпучего груза

Страницы работы

Содержание работы

Министерство транспорта Российской Федерации

ФЕДЕРАЛЬНОЕ АГЕНСТВО ВОЗДУШНОГО ТРАНСПОРТА

ФГОУ ВПО “Санкт-Петербургский государственный

университет гражданской авиации”

Отчет по лабораторной работе № 4

“Определение угла естественного откоса сыпучего груза”

по дисциплине: “Грузоведение”

Выполнила: студентка, группа №493

Васильева Наталья Олеговна

Голубева Ксения Ивановна

3. Результаты измерений и расчётов……………………………………4

5. Библиографический список…………………………………….…….7

Ознакомиться с методикой определения угла естественного откоса сыпучего груза и изучить характер изменения угла естественного откоса в зависимости от высоты загрузки из бункера на грузовую платформу.

2. Описание работы

Угол естественного откоса – это наибольший угол, между образующей свободной боковой поверхности сыпучего груза и горизонтальной плоскостью.

Величина угла естественного откоса зависит от подвижности частиц сыпучего груза. С увеличением подвижности частиц груза величина угла уменьшается. В свою очередь подвижность частиц насыпного груза определяется силами трения и сцепления между отдельными частицами. Таким образом, по величине угла естественного откоса груза можно судить о его подвижности.

Различают углы естественного откоса в покое αn и в движении αд. Угол αn получается при свободной засыпке груза, αд — при падении груза с некоторой высоты, а также под действием вибраций, например, при перемещении груза транспортирующими машинами. Угол естественного откоса груза в движении меньше аналогичного угла в покое, так как потенциальная энергия падающего груза переходит в кинетическую энергию в процессе движения частиц.

Обычно угол естественного откоса сыпучего груза в движении αд определяется при высоте падения около 1 м. На основании экспериментальных исследований принимается

По подвижности частиц сыпучие грузы разделяют на три группы (табл.1):

От подвижности частиц сыпучего груза зависит площадь поперечного сечения груза на ленте или настиле конвейеров, а как следствие, — производительность конвейеров.

От величины угла естественного откоса зависит максимальный угол наклона конвейеров, а также ряд параметров перегрузочных устройств (бункеров, лотков и т.п.).

При выполнении работы экспериментальным методом, следует действовать следующим образом.

Определение угла естественного откоса сыпучего груза производится на лабораторной установке (рис. 1), состоящей из подставки со стойкой 1, на которой на подвижном кронштейне 2 укреплён цилиндр 3 с сыпучим грузом. Разгрузочная воронкообразная часть цилиндра закрывается поворотной заслонкой 4. После заполнения цилиндра 3 сыпучим грузом и установки его в требуемое положение по высоте h заслонка поворачивается, и груз высыпается на площадку 5, образуя конус. Измерение угла естественного откоса производится угломером 6 в шести-восьми сечениях конуса путём поворота площадки 5.

Рис. 1. Установка для определения угла естественного откоса.

Опыты производятся для четырёх-пяти значений h, начиная с h=10 см, причём каждый опыт повторяется два-три раза. Для получения устойчивых результатов рекомендуется объём порции груза, засыпаемого в цилиндр 3, во всех опытах принять одинаковым.

При нулевой высоте разгрузки цилиндр с открытой заслонкой необходимо поднимать с малой скоростью, не допуская большого движения груза.

Для серии измерений по каждой высоте разгрузки выполняется статистическая обработка с определением математического ожидания величины угла естественного откоса, среднеквадратического отклонения и доверительного интервала для среднего значения.

По полученным данным строится график зависимости R = f(h). Кривая проводится с учётом доверительных интервалов для средних значений угла.

Полученные в лабораторной работе величины углов естественного откоса грузов в покое следует сравнить с их табличными значениями и сделать выводы о закономерности изменения угла естественного откоса с увеличением высоты разгрузки. По величине угла естественного откоса в покое следует определить, к какой группе подвижности относится груз.

3. Результаты измерений и расчётов

Результаты измерений и расчётов оформляются в табл. 2.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector