Stroi-doska.ru

Строй Доска
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что значит коэффициент откоса

Коэффициент заложения

Полезное

Смотреть что такое «Коэффициент заложения» в других словарях:

Коэффициент 1,2 — 4.2. Коэффициент 1,2: 4.2.1. Косое пересечение; косое пролетное строение или несимметричное относительно продольной оси; 4.2.2. При расположении сооружения на горизонтальной кривой; 4.2.3. При неразрезных пролетных строениях, несимметричныхпо… … Словарь-справочник терминов нормативно-технической документации

Пример — Изображение отпечатка пальца. Источник … Словарь-справочник терминов нормативно-технической документации

СП 47.13330.2012: Инженерные изыскания для строительства. Основные положения — Терминология СП 47.13330.2012: Инженерные изыскания для строительства. Основные положения: 8.4.9 Биологические (флористические геоботанические, фаунистические) исследования выполняют для определения видового состава флоры и основных растительных… … Словарь-справочник терминов нормативно-технической документации

Параметры — 8. Параметры 8.1. Грузоподъемность, Q Масса груза и/или людей, на подъем которой рассчитано грузонесущее устройство и подъемник в целом Источник: ПБ 10 518 02: Правила устройства и безопасной эксплуатации строительных подъемников … Словарь-справочник терминов нормативно-технической документации

СП 151.13330.2012: Инженерные изыскания для размещения, проектирования и строительства АЭС. Часть I. Инженерные изыскания для разработки предпроектной документации (выбор пункта и выбор площадки размещения АЭС) — Терминология СП 151.13330.2012: Инженерные изыскания для размещения, проектирования и строительства АЭС. Часть I. Инженерные изыскания для разработки предпроектной документации (выбор пункта и выбор площадки размещения АЭС): 3.48 MSK 64: 12… … Словарь-справочник терминов нормативно-технической документации

СТО НОСТРОЙ 2.17.66-2012: Освоение подземного пространства. Коллекторы и тоннели канализационные. Требования к проектированию, строительству, контролю качества и приемке работ — Терминология СТО НОСТРОЙ 2.17.66 2012: Освоение подземного пространства. Коллекторы и тоннели канализационные. Требования к проектированию, строительству, контролю качества и приемке работ: 3.1 активный пригруз забоя : Регулируемое давление на… … Словарь-справочник терминов нормативно-технической документации

Земля — I Земля (от общеславянского зем пол, низ) третья по порядку от Солнца планета Солнечной системы, астрономический знак ⊕ или, ♀. I. Введение З. занимает пятое место по размеру и массе среди больших планет, но из планет т … Большая советская энциклопедия

Железные и автомобильные дороги. Мосты. Тоннели. Метрополитены. Промышленный транспорт. Справочник базовых цен на проектные работы для строительства — Терминология Железные и автомобильные дороги. Мосты. Тоннели. Метрополитены. Промышленный транспорт. Справочник базовых цен на проектные работы для строительства: 4.1. Коэффициент 1,1: 4.1.1. Конструкции опор выполняются в виде объемных… … Словарь-справочник терминов нормативно-технической документации

Атмосферный ядерный взрыв — Высокий воздушный взрыв Questa (Операция Доминик) Атмосферный ядерный взрыв ядерный взрыв, происходящий в достаточно плотном … Википедия

Пример теплотехнического расчета трубопровода при подземном переходе железной дороги. — 4.5. Пример теплотехнического расчета трубопровода при подземном переходе железной дороги. Проектируется переход железной дороги теплопроводом под путями 2 класса во II климатическом районе. Многолетняя средняя сумма градусо суток отрицательных… … Словарь-справочник терминов нормативно-технической документации

Коэффициент внутреннего трения

А так как коэффициент внутреннего трения

,

то окончательно получаем:

. (17.31)

Это соотношение можно сформулировать следующим образом: предельный угол откоса в сыпучих грунтах равен углу внутреннего трения грунта. Этот угол сыпучих грунтов называется углом естественного откоса. Для сухих сыпучих грунтов он является величиной постоянной.

Влияние фильтрационных сил. Если устройство откоса производится в насыщенных водой грунтах или если уровень грунтовых вод, например, при выпадении сильных дождей внезапно повышается выше основания откоса, то на величину угла естественного откоса существенное влияние будет оказывать гидродинамическое давление фильтрующейся из откоса воды.

Воспользуемся решением авторов [45], выделив на поверхности откоса объем грунта, равный единице (например, 1 см3). Здесь кроме собственного веса грунта , который следует принимать с учетом взвешивающего действия воды, на выделенный элемент будет действовать по касательной к линии тока воды гидродинамическое давление . Результирующее давление определим путем построения параллелограмма сил и (рис.17.25). Так как угол внутреннего трения сыпучего грунта, насыщенного водой, практически равен углу внутреннего трения сухого грунта, то новая касательная к поверхности скольжения сила будет составлять с результирующим давлением по-прежнему угол .

Отсюда вытекает правило определения угла откоса грунта при фильтрации воды из массива, а именно: следует построить равнодействующую сил и и от направления равнодействующей отложить угол, равный ; полученное направление и определит для рассматриваемого случая предельный угол откоса . Этот угол будет максимальным, при котором частицы грунта будут находиться в покое. Для определения угла устойчивого откоса необходимо полученное значение угла разделить на коэффициент запаса, больший единицы.

Таким образом, угол естественного откоса является величиной постоянной только для сыпучих грунтов, не насыщенных водой. Если же на откос действуют, кроме веса частиц грунта, фильтрационные силы воды, то угол откоса будет изменяться в зависимости от величины гидродинамического воздействия воды. Чем круче откос, тем больший гидравлический уклон будет иметь уровень грунтовых вод при выходе воды на свободную поверхность откоса, и, следовательно, тем больше будет влияние фильтрационных сил. Во многих случаях за угол, составляемый гидродинамическим давлением с горизонтом, можно принимать угол естественного откоса грунта.

Рис.17.25 — Схема определения

угла откоса при действии

Рис.17.26 — Схема сил,

действующих на частицу

сыпучего грунта при учете фильтрационного давления

Определим условие, при котором твердые частицы грунта на поверхности откоса, подвергающегося действию фильтрационных сил, будут находиться в устойчивом состоянии. Допустим, что направление гидродинамических давлений совпадает с направлением откоса (рис.17.26). Тогда силы, сдвигающие выделенный на поверхности откоса единичный объем грунта, будут равны:

и ,

где — объем пор в единице объема грунта; — удельный вес воды.

Силы, удерживающие рассматриваемый элемент грунта на поверхности откоса, будут

.

,

где — удельный вес грунта, облегченный весом вытесненной воды.

Для устойчивого откоса сдвигающие силы должны составлять некоторую долю от удерживающих сил:

, (17.32)

где — коэффициент устойчивости при скольжении частиц грунта.

. (17.33)

Если , то откос будет устойчивым.

Для применения метода оценки степени устойчивости склонов и откосов, а также для разработки и назначения наиболее эффективных противооползневых мероприятий необходимо знать форму проявления и возможность развития оползневого процесса, природную обстановку – климат, топографические особенности склона, геологическую структуру толщи склона, инженерно-геологические свойства пород, слагающих толщу, режим грунтовых вод, гидрологические особенности водотоков, омывающих склон.

Читать еще:  Конструктивные решения по укреплению откосов

На рис.17.27 приведены основные формы нарушения устойчивости и деформации склонов, а в табл.17.9 — классификация по характеру и скорости их деформации.

Рис.17.27 — Основные формы нарушения устойчивости и деформации склона: а – обвалы и вывалы; б – обрушение со срезом и вращением;

в – скольжение; г – покровные оползни; д – оплывы;

е – скол при просадке

Оползни всегда создавали много проблем для народного хозяйства Украины. В связи с увеличением техногенной нагрузки многие из них активизировались (происшествие на жилом массиве г. Днепропетровска, повлекшее человеческие жертвы, оползень в г. Киеве, из-за которого пришлось выселить жильцов из тринадцатиэтажного дома. Это подтверждает необходимость разработки надежных противооползневых конструкций. Значительные противооползневые работы проводятся по устройству многорядных ростверков и буронабивных свай длиной 20 м и диаметром мм на дороге Ялта-Севастополь, устройству подпорных стен с анкерным креплением оползней на территории санатория «Белоруссия» в Мисхоре, инженерных сооружений по сохранению парка и здания Ливадийского дворца.

Всякое перемещение массива грунта вызывает механическое нарушение его структуры, что, в свою очередь, создает предпосылки для изменений физико-механических свойств грунта.

Развитие оползневого процесса всегда связано с определенными причинами, которые приведены в табл.17.9.

Обвалы проявляются при внезапном обрушении откосов в скальных и полускальных породах при их значительной крутизне падением больших объемов породы, измеряемых миллионами кубометров.

Вывалы, в отличие от обвалов, характеризуются падением с той или иной высоты с поверхности откоса отдельных камней и блоков породы, отчлененных от скального массива трещинами.

Обрушение со срезом и вращением – это срез по некоторой поверхности смещения части грунтовой толщи, слагающей массив склона или откоса, в результате чего происходит дробление отколовшихся блоков или срез новых. Этот процесс наблюдается при перенапряжении грунтового массива и образовании в нем среза или скола определенной части толщи.

Скольжением является перемещение по наклонной плоскости скальных пород, при наличии в пластах глинистых, хлоритовых, тальковых и слюдистых сланцев. Имеет место смещение больших масс грунта, часто песка, подсыпаемого на наклонную поверхность без специальной предварительной обработки.

Покровные оползни проявляются в виде смещения некоторого массива грунта по склону под влиянием собственного веса и давления массы породы, лежащей выше по склону. Эти явления свойственны побережью Одессы и прибрежной полосе Южного Крыма.

Оплывы – это нарушение устойчивости песчаных и глинистых грунтов по склону при локальном переувлажнении, динамических нагрузках, при отливах на морском берегу, спаде паводка на реках.

Скол при просадке представляет собой нарушение устойчивости грунтов в основании при проявлении деформаций в виде пучения и выпора грунта в случае возведения высоких насыпей, в слабых грунтах, нарушении устойчивости откосов и склонов при водонасыщении береговых уступов из лессовидных грунтов и провалов в закарстованных районах.

Для определения устойчивого очертания откоса при минимальном объеме земляных работ производят расчеты, основанные на результатах инженерно-геологических изысканий и исследования грунтов, слагающих

Коэффициент устойчивости откоса и склона по нормам СП

Нормирование коэффициент устойчивости откосов и склонов приведено в следующих нормативных документах:

  • СП 22.13330.2016 Основания зданий и сооружений. Актуализированная редакция СНиП 2.02.01-83*;
  • СП 116.13330.2012 Инженерная защита территорий, зданий и сооружений от опасных геологических процессов. Основные положения. Актуализированная редакция СНиП 22-02-2003;
  • ОДМ 218.2.078-2016 Методические рекомендации по выбору конструкции укрепления откосов земляного полотна автомобильных дорог общего пользования.

Выделим положения данных нормативных документов, которые касаются коэффициента устойчивости откоса и склона.

Согласно СП 22.13330.2016:

п.5.1.9 Проверку оснований по несущей способности следует проводить в случаях, если:

б) сооружение расположено на откосе или вблизи откоса;

Проверку оснований по несущей способности в случаях, приведенных в перечислениях а, б и в, следует проводить с учетом конструктивных мероприятий, предусмотренных для предотвращения смещения проектируемого фундамента.

Если проектом предусматривается возможность возведения сооружения непосредственно после устройства фундаментов до обратной засыпки грунтом пазух котлованов, следует проводить проверку несущей способности основания, учитывая нагрузки, действующие в процессе строительства.

п.5.7.2 Расчет оснований по несущей способности проводят исходя из условия

где F — расчетная нагрузка на основание, кН, определяемая в соответствии с требованиями п.5.2 СП 22.13330.2016;

Fu — сила предельного сопротивления основания, кН;

γc — коэффициент условий работы, принимаемый:

      • для песков, кроме пылеватых — 1,0;
      • для песков пылеватых, а также глинистых грунтов в стабилизированном состоянии — 0,9;
      • для глинистых грунтов в нестабилизированном состоянии — 0,85;
      • для скальных грунтов:
      • невыветрелых и слабовыветрелых — 1,0
      • выветрелых — 0,9
      • сильновыветрелых — 0,8;

γn — коэффициент надежности по ответственности, принимаемый равным 1,2; 1,15 и 1,10 соответственно для сооружений геотехнических категорий 3, 2 и 1.

Примечание — В случае неоднородных грунтов средневзвешенное значение принимают в пределах толщины b1+0,1b (но не более 0,5b) под подошвой фундамента, где b — сторона фундамента, м, в направлении которой предполагается потеря устойчивости, а b1 =4 м.

Согласно СП 116.13330.2012:

п.5.1.6 При выборе защитных мероприятий и сооружений и их комплексов следует учитывать виды возможных деформаций склона (откоса), уровень ответственности защищаемых объектов, их конструктивные и эксплуатационные особенности.

Виды противооползневых и противообвальных сооружений и мероприятий следует выбирать на основании расчетов общей и местной устойчивости склонов (откосов), т.е. устойчивости склона (откоса) в целом и отдельных его морфологических элементов, данных мониторинга.

п.5.2.1 Противооползневые и противообвальные сооружения и их конструкции проектируются по методу предельных состояний. При этом расчеты производятся по двум группам предельных состояний, которые включают:

первая (полная непригодность сооружения к дальнейшей эксплуатации):

      • расчеты общей прочности и устойчивости системы сооружение — грунтовый массив (откос, склон);
      • расчеты прочности и устойчивости отдельных элементов сооружения, разрушение которых приводит к прекращению эксплуатации сооружения;
      • расчеты перемещений сооружений и конструкций, от которых зависит прочность или устойчивость сооружения в целом, а также прочность или устойчивость объектов на защищаемой территории и др.;
Читать еще:  Как прикручивать пластиковые откосы

вторая (непригодность к нормальной эксплуатации):

      • расчет оснований, откосов, склонов и элементов конструкции, разрушение которых не приводит все сооружение в непригодное состояние, на местную прочность;
      • расчеты по ограничению перемещений и деформаций сооружений, прилегающих территорий и объектов на них расположенных;
      • расчеты по образованию или раскрытию трещин и строительных швов.

5.2.2 Расчет противооползневых и противообвальных сооружений, проектируемых откосов и склонов производится исходя из условия

где F— расчетное значение обобщенного силового воздействия на сооружение или его конструктивные элементы (сила, момент, напряжение), определяемое в соответствии с СП 20.13330, деформации (смещения) или другие параметры, по которым производится оценка предельного состояния;

Ψ — коэффициент сочетания нагрузок, принимающий значения:

При расчетах по предельным состояниям первой группы:

      • для основного сочетания эксплуатационного периода Ψ = 1,0;
      • то же, для строительного периода и ремонта Ψ = 0,95;
      • для особого сочетания нагрузок, в том числе сейсмической нагрузки на уровне проектного землетрясения (ПЗ) годовой вероятностью 0,01 Ψ =0,95;
      • прочих нагрузок годовой вероятностью 0,001 и максимального уровня расчетного землетрясения (МРЗ) Ψ =0,90.

При расчетах по предельным состояниям второй группы на основное сочетание нагрузок Ψ = 1,0;

R — расчетное значение обобщенной несущей способности, прочности, деформации (смещения) или другого параметра, устанавливаемого соответствующими нормами проектирования в зависимости от типа конструкции и используемых материалов с учетом коэффициентов надежности по материалу γm и (или) грунту γg ;

γn — коэффициент надежности по ответственности сооружения:

При расчетах по предельным состояниям первой группы в зависимости от уровня ответственности, согласно ГОСТ Р 54257:

При расчетах по предельным состояниям второй группы γn = 1,00.

При расчетах устойчивости склонов, сохраняемых в естественном состоянии, γn принимается как для сооружения или территории, которые могут перейти в непригодное состояние при разрушении склона.

При расчетах природных склонов γn =1,0;

γd — коэффициент условий работы, учитывающий характер воздействий, возможность изменения свойств материалов со временем, степень точности исходных данных, приближенность расчетных схем, тип сооружения, конструкции или основания, вид материала и другие факторы; устанавливается в диапазоне

нормами проектирования отдельных видов сооружений.

п.5.2.3 Расчет устойчивости проектируемых склонов и откосов в соответствии с зависимостью 5.1 допускается выполнять только для простейших форм поверхности скольжения, отделяющей призму обрушения от неподвижного массива грунта (в виде отрезка прямой или окружности). В этом случае зависимость 5.1 записывается в виде:

где kst = γn ·Ψ/γd — нормированное значение коэффициента устойчивости склона (откоса);

kst — расчетное значение коэффициента устойчивости, определяемое как отношение удерживающих сил (моментов) R , действующих вдоль линии скольжения, к сдвигающим силам (моментам) F .

В общем случае расчеты устойчивости выполняются при произвольных формах поверхности скольжения. При этом условие 5.1 принимает вид

В этом случае под коэффициентом устойчивости kst понимают число, на которое следует разделить исходные прочностные характеристики грунта tgφ и c , чтобы ограниченный данной пробной поверхностью скольжения массив пришел в состояние предельного равновесия.

При этом, соотношение между нормальными σn и касательными τnt напряжениями по всей поверхности скольжения, соответствующее предельному состоянию призмы обрушения, отвечает условию

где φI = arctg(tgφ /kst) и cI =c/kst — значения угла внутреннего трения и удельного сцепления грунта, при которых наступает сдвиг грунта, соответственно.

Коэффициент устойчивости склона (откоса) находят как минимальное значение kst по всем возможным пробным поверхностям скольжения.

Нахождение коэффициента устойчивости склона (откоса) может производиться как с использованием традиционных методов теории предельного равновесия (с разбиением призмы оползания на отсеки или без оного), так и упругопластическими расчетами методом конечных элементов с использованием метода снижения прочностных характеристик.

Согласно ОДМ 218.2.078-2016:

п.6.4.2 В общем случае, надежность конструкции по критериям прочности и устойчивости считается обеспеченной при выполнении условия

где F — расчетное значение обобщенного силового воздействия (сила, момент, напряжение), деформации или другого параметра, по которому производится оценка предельного состояния;

R — расчетное значение обобщенной несущей способности, деформации или другого параметра конструкции;

ηс — коэффициент сочетания нагрузок для основного сочетания нагрузок и воздействий в период нормальной эксплуатации — 1,00; то же — для периода строительства и ремонта — 0,95;

γf — коэффициент надежности по нагрузке по таблице 5;

γc — коэффициент условий работы, учитывающий характер воздействий, возможность изменения свойств материалов во времени, степень точности исходных данных и прочие факторы, при расчете элементов на нагрузки строительного периода принимается γc=1,0, при расчете на нагрузки эксплуатационного периода γc=1,15;

γn — коэффициент надежности по ответственности сооружения (при расчетах по предельным состояниям I группы γn=1,15, II группы γn=1,0).

Коэффициенты надежности следует принимать с учетом требований ГОСТ 27751, СП 20.13330.2011, СП 38.13330.2012, СП 58.13330.2012, СП 116.13330. 2012.

Указанные значения коэффициентов надежности могут быть изменены для случаев установленных нормативными документами на проектирование отдельных видов элементов конструкций или в соответствии с Техническим заданием на проектирование.

Таблица 5 — Значения коэффициентов надежности по нагрузке (ОДМ 218.2.078-2016)

Коэффициент надежности по нагрузке γf

Собственный вес элементов конструкций и материалов 2)

Напорное давление, вызванное сезонными и суточными колебаниями уровней, подпором грунтовых вод

Давление воды непосредственно на поверхности сооружения и основания, силовое воздействие фильтрующей воды; волновое давление; поровое давление

1) Коэффициенты перегрузки, указанные в скобках, принимают в тех случаях, когда возможное уменьшение нагрузки ухудшает работу конструкции (при расчетах на опрокидывание, сдвиг).
2) Коэффициент надежности по нагрузке γf следует принимать равным единице для всех грунтовых нагрузок и собственного веса сооружения, вычисленных с применением расчетных значений характеристик грунтов (удельного веса и характеристик прочности) и материалов (удельного веса бетона и др.), определенных в соответствии со строительными нормами и правилами на проектирование оснований и отдельных видов сооружений.
3) В таблице приведены коэффициенты надежности по нагрузке для расчетов по I группе предельных состояний.

Читать еще:  Пластиковые откосы цвет орех

Что значит коэффициент откоса

Строительная компания «ПАЛАССТРОЙ» г.Москва

Подготовительные работы

Работы, выполняемые в подготовительный период, определяются проектами организации строительства и производства работ в соответствии со СНиП 12-01-2004. Организация строительства.

До начала земляных работ на строительной площадке должны быть выполнены следующие подготовительные работы:

  1. Разработаны проекты производства работ по устройству земляных сооружений и приняты закрепленные на местности знаки геодезической разбивки сооружений;
  2. Отведены и закреплены на местности площади с учетом необходимой ширины полосы земли для производства работ, под грунтовые карьеры, постоянные и временные отвалы грунта, временные дороги и подъезды к строительной площадке;
  3. Устроены водоотводные сооружения, временные трубопроводы, линии электропередач;
  4. Выполнены работы по расчистке территории от леса, корчевке пней, срезке кустарника, уборке камней, осушению и отводу поверхностных вод;
  5. Проведена разборка подлежащих сносу строений и их фундаментов;
  6. Выполнена срезка растительного слоя грунта и планировка площадки строительства;
  7. Выполнены работы по устройству временных зданий, складских помещений и др.
  8. Устроены ограждения строительной площадки и опасной зоны работ за ее пределами.

Все подготовительные работы должны быть технологически увязаны с комплексом работ на объекте, что исключает повторные объемы работ и улучшит технологические условия площадки.

Земляные работы

При подготовке и проведении земляных работ основными нормативными документами являются СНиП 3.02.01-87. Земляные сооружения, основания и фундаменты, ГОСТ Р 12.3.048-2002. ССБТ. Строительство. Производство земляных работ способом гидромеханизации. Требования безопасности, ГОСТ 25100-95. Грунты.

Виды земляных работ

Земляными называют работы по разработке грунта в выемках, его транспортированию (перемещению) и укладке в насыпи. Выемки и насыпи представляют собой земляные сооружения, которые в зависимости от их назначения и срока эксплуатации могут быть постоянными и временными. Постоянные земляные сооружения — плотины, дамбы, каналы, водохранилища, шламонакопители и т. п. — предназначены для длительной эксплуатации. Временные земляные сооружения устраивают как необходимый элемент для последующих строительно-монтажных работ. К ним относятся котлованы и траншеи.

Котлованами называются выемки, ширина которых мало отличается от длины, а траншеями — выемки, имеющие малые размеры поперечного сечения и большую длину. Котлованы необходимы для строительства сооружений, а траншеи — для прокладки трубопроводов.

Наклонные боковые поверхности выемок и насыпей называют откосами, а горизонтальные поверхности вокруг них — бермами. Остальными элементами земляных сооружений являются дно выемки — нижняя горизонтальная земляная поверхность выемки; бровка — верхняя кромка откоса; подошва — нижняя кромка откоса; крутизна (или коэффициент) откоса.

К земляным сооружениям относятся также резервы и кавальеры. Резервы — это выемки, из которых берут грунт для устройства насыпи, а кавальеры — насыпи, образуемые при отсыпке ненужного грунта, например для временного его хранения, используемого затем для засыпки траншей или пазух котлованов.

После устройства подземных сооружений и частей зданий грунт укладывают в пространство между боковой поверхностью сооружения и откосом котлована. Такую работу называют обратной засыпкой пазух.

Земляные сооружения при их эксплуатации не должны изменять свою форму и основные размеры, давать просадки, размываться под действием текущей воды и поддаваться влиянию атмосферных осадков.

Разработка траншей и котлованов

Разработку траншей и котлованов глубиной до 1,5 м производят одноковшовыми экскаваторами, оборудованными обратной лопатой или драглайном, а при глубине котлованов свыше 1,5 м — также и прямой лопатой.

В траншеях с вертикальными стенками наименьшее расстояние в свету между боковой поверхностью сооружения и досками крепления или шпунтом должно составлять не менее 0,7 м.

Ширину котлованов и траншей по дну для ленточных и отдельно стоящих фундаментов назначают на 0,2 м больше ширины конструкции фундаментов, гидроизоляций, опалубки и крепления. Для котлованов с откосами расстояние между подошвой откоса и сооружением должно составлять 0,3 м.

Глубину котлованов и траншей с вертикальными стенками без крепления, расположенных выше уровня грунтовых вод, принимают не более: в песчаных и крупнообломочных грунтах — 1м, в супесях — 1,25м, в суглинках и глинах, кроме очень прочных — 1,5м, в очень прочных суглинках и глинах – 2м (плотностью 2,15 т/м3).

Уплотнение и закрепление грунтов

Укладка в насыпь и уплотнение грунта выполняются при планировочных работах, возведении различных насыпей, обратной засыпке траншей, пазух фундаментов и др. Уплотнение производится с целью увеличения несущей способности грунта, уменьшения его сжимаемости и снижения водопроницаемости. Уплотнение может быть поверхностным и глубинным. В обоих случаях оно осуществляется механизмами.

Практикуется уплотнение грунтов укаткой, трамбованием и вибрированием, однако целесообразнее применять комбинированный метод, заключающийся в одновременной передаче на грунт различных воздействий (например, вибрирование и укатка).

Чтобы обеспечить равномерное уплотнение, отсыпанный грунт разравнивают бульдозерами или другими машинами, предварительно разбив участок работ на захватки. Эффективность работы увеличится, если грунт будет иметь оптимальную для данного грунта влажность. Поэтому сухие грунты должны увлажняться, а переувлажненные — осушаться.

При обратной засыпке пазух фундаментов или траншей уплотнение грунта ведется в стесненных условиях, поэтому во избежание повреждения фундаментов или трубопроводов прилегающий к ним грунт на ширину 0,8 м уплотняется с помощью виброплит, пневматических и электрических трамбовок слоями толщиной 0,15—0,25 м.

Насыпи, имеющие большую площадь, рекомендуется уплотнять прицепными или самоходными гладкими или кулачковыми катками, а также трамбующими машинами по замкнутому кругу. Проходки грунтоуплотняющих машин делаются с небольшим перекрытием во избежание пропусков неуплотненного грунта. Число проходок по одному месту и толщина слоя задаются в зависимости от вида грунта и типа грунтоуплотняющей машины или устанавливаются опытным путем (обычно 6—8 проходок).

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector