Stroi-doska.ru

Строй Доска
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как рассчитать площадь оконного откоса

Как рассчитать площадь оконного откоса

В работе приведён обзор результатов исследований отечественных и зарубежных авторов конструкций заполнений световых проёмов зданий. Представлены результаты теоретических и экспериментальных исследований теплопотерь через окна с двойным и тройным остеклением высотой более 2,5 м в зависимости от расположения оконных переплётов в инерционных стенах православных храмов толщиной dст = 0,9–1,54 м. Даны зависимости для расчёта общего коэффициента теплопередачи окна и прилегающего оконного откоса в толстостенных конструкциях, сравнимых по размерам с шириной окна. Определено рациональное расположение оконных коробок в проёмах, имеющих минимальные теплопотери через зону оконного проёма. Приведены графики, характеризующие минимальные размеры зоны возможной конденсации при рациональном расположении оконного переплета по отношению к продольной оси стены.

Одним из первых исследователей в этой области следует считать П. Сальмоновича, опубликовавшего в 1892 г. свою работу [1]. Первая же обстоятельная работа в области теплового режима окон выполнена О.А. Вутке в 1928 г. в Государственном институте сооружений [2].

В 1930–1940 гг. теплопередачей через оконные проемы занимались отечественные ученые К.Ф. Фокин [3], В.Д. Мачинский [4, 5], Е.И. Булгаков, В.В. Леонов, В.Л. Громов, Б.Ф. Васильев, М.А. Михеев, Р.Е. Бриллинг [6], И.В. Лукащик, Д.Я. Бояринцев и другие, а за рубежом – Мюлль, Рейхер, Якоб, Мак-Адамс, Ритшель-Браббе, Бергвал, Дальберг, Ниман, Шмидт и другие [2].

Следует отметить, в первую очередь, исследования К.Ф. Фокина [3] и В.Н. Богословского [7] по определению теплозащитных свойств двойного остекления, теплопередачи оконных проемов и откосов зданий, а также Р.Е. Брилинга по воздухопроницаемости ограждающих конструкций [6].

Из зарубежных исследований заслуживают наибольшего внимания работы Мюлля и Рейхера по изучению теплопередачи воздушных прослоек. Результаты этих исследований позже были дополнительно обработаны Якобом и М.А. Михеевым. Шмидт [8] на основании собственных экспериментов и опытов, проведенных Нуссельтом, Мюллем и Рейхером, Энном, Бекманом и Сельшопом над прослойками газов и жидкостей, сделал сводный обзор. На основе этого обзора, а также с учетом результатов Фойгта, Кришера, Вилькенса, Гехлера, Квирра и Райша Ниман установил зависимость теплопередачи воздушных прослоек от их формы и положения.

Изучение эксплуатации окон в условиях развития площади остекления и увеличения этажности зданий проводили Г.Ф. Кузнецов, В.Е. Константинова, И.С. Либер, И.Ф. Ливчак, Ю.А. Калядин, А.И. Ананьев, И.С. Шаповалов, Н.Н. Разумов и другие.

Большой вклад в определение теплотехнических характеристик различных конструкций окон и разработку методов их расчета внесли ученые НИИСФ (Москва). Данной проблемой занимались В.К. Савин, В.А. Дроздов, Н.П. Сигачев, В.И. Бурцев, Н.С. Давыдова, А.А. Верховский.

Также заслуживают серьёзного работы П.С. Лобкова, Б.А. Крупнова, Н.П. Умняковой, Е.А. Петровой, В.Н. Варапаева, Ю.Я. Кувшинова, С.В. Карапетяна, В.Н. Шершнева, Петрова Е.В.

Площадь световых проемов православных храмов составляет в среднем от 15 до 30 % общей поверхности наружных стен [9]. В этих зданиях расход теплоты распределялся приблизительно следующим образом: 40 % тепловой энергии идет на нагрев вентиляционного воздуха, около 40 % — на покрытие потерь через окна, около 20 % — на покрытие теплопотерь через стены и перекрытия [10].

Читать еще:  Как правильно называется откос оконный

Влияние конструкции заполнения переплета на теплопотери через окна показано на рис. 1 [10]. Расчет эффективности применения заполнений световых проёмов с повышенной теплозащитой показывает, что при устройстве окон с теплозащитными экранами теплопотери зданий снижаются на 7–11 %, а при использовании теплоотражающих стекол – в среднем на 9 % [10]. Приведенные затраты на заполнение оконных проемов с повышенной теплозащитой на 2–9 % меньше, чем затраты при тройном остеклении. В период резкого похолодания, как показывают натурные наблюдения, теплопотери через окна составляют до 80 % и более от общих потерь [11]. Максимальные потери теплоты помещением Qогр совпадают во времени с наибольшими теплопотерями через окна. Окна практически не обладают тепловой инерцией, поэтому наибольшие теплопотери через них соответствуют минимальной наружной температуре [12].

Обращаясь к изучению лучших образцов народного творчества в области строительства жилищ, можно установить, что народными зодчими при выборе оконных проемов прекрасно учитывались местные климатические особенности и гигиенические требования.

Архитектурные особенности зданий православных храмов, количество и возможное расположение окон культовой архитектуры и сведения об исследуемых храмах рассмотрены в [13].

Рис. 1. Потери тепла через окна с двойным остеклением в раздельных деревянных переплетах: 1 – с обычным стеклом; 2 – с теплоотражающим стеклом; 3 – с теплозащитным экраном из синтетической пленки; 4 – то же, из поролона; 5 – то же, из пенопласта

Наибольшее распространение в России получили окна с деревянными, стальными и алюминиевыми переплетами. Реже использовались окна с комбинированными переплетами.

Изменение температуры вблизи оконных и дверных проемов тем значительнее, чем толще стена и чем меньше расстояние между оконными переплетами. При этом температура внутренней поверхности стены несколько повышается по мере приближения к проему, а на откосах проема резко понижается.

Решенная В.Н. Богословским задача [7] применима только для стен с толщиной соизмеримой с толщиной оконной коробки. В случае значительного превышения толщины стены dо над толщиной оконной коробки dок нулевая изотерма не проходит через середину оконного переплета, что подтверждается натурными и расчетными данными [14].

Расчет тепловых потоков, термического сопротивления и температурных полей был проведён для двойного и тройного остекления в храмах.

Расчетная схема теплопередачи через двухслойную светопрозрачную конструкцию представлена на рис. 2.

Рис. 2. Расчетная схема теплопередачи через двухслойную светопрозрачную конструкцию

В холодный период у внутренней поверхности остекления образуется ниспадающий конвективный поток, а у наружной – восходящий. В воздушной замкнутой прослойке возникает циркуляционное движение с обратносимметричными пограничными слоями.

В результате экспериментальных исследований было установлено, что циркуляция воздуха в межстекольном пространстве для наиболее распространённых конструкций окон в храмах начинается при толщине dок = 220 мм для высоты оконной коробки hок = 2,5–3 м; при толщине dок = 200 мм для высоты оконной коробки hок = 3–4 м; при толщине dок = 160 мм для высоты оконной коробки hок > 4 м.

Расчёт теплопотерь через оконные проемы церквей следует выполнять с учетом коэффициента дополнительной теплопередачи DК через откосы, прибавляя его значение к коэффициенту теплопередачи окна К′ок.

Читать еще:  Отделка наружных откосов пластиковых окон металлом

В результате общий коэффициент теплопередачи окна в толстостенных конструкциях храма будет равен:

Коэффициент дополнительной теплопередачи окна DК определяется по формуле:

(2)

где qw – удельные дополнительные потери теплоты через оконный откос, Вт/(м⋅°С); Р – периметр оконного проема, м; F – площадь оконного проема, м2.

Оконные рамы храмов имеют формы, отличающиеся от прямоугольных. Для того, чтобы увязать дополнительные теплопотери через откосы с конфигурацией оконного проема, они определяются по величине удельных дополнительных потерь теплоты qw через единицу длины периметра оконного откоса, имеющего температуру ниже температуры внутренней поверхности плоскости стены за пределами влияния двухмерного температурного поля откоса.

На рис. 3 и 4 приведены результаты теоретических и экспериментальных исследований величины qw в зависимости от температуры внутреннего tв и наружного tн воздуха, толщины стены dо и положения двойного оконного деревянного переплета толщиной dок = 0,15 м по отношению к продольной оси стены . Данная зависимость наиболее существенна при сравнимых размерах ширины оконного проема храма с толщиной ограждения dо. В этом случае нулевая изотерма не совпадает с осью стены.

Величина удельных дополнительных теплопотерь через оконный откос qw определяется из рис. 3 и 4.

По выражению (2) рассчитывается коэффициент дополнительной теплопередачи окна DК. Значение коэффициента теплопередачи конструкции окна К’ок находится по СТО [15].

Исследование влияния расположения оконной коробки в проеме показало, что при перемещении коробки к внутренней поверхности стены вблизи окна температура изменяется. Сопротивление теплопередаче окна с учетом потерь через оконные откосы при этом уменьшается до 30 % при традиционном расположении оконного переплёта на четверть к наружной поверхности стены.

Рис. 3. Результаты теоретических (нечетные цифры) и экспериментальных (четные цифры) исследований величины удельных дополнительных теплопотерь через оконный откос qw в зависимости от температуры внутреннего tв = 14 °С и наружного tн = –8. 30 °С воздуха, толщины стены dо = 1,04м и положения двойного оконного деревянного переплета толщиной dок = 0,15 м по отношению к продольной оси стены

Рис. 4 Результаты теоретических (нечетные цифры) и экспериментальных (четные цифры) исследований величины удельных дополнительных теплопотерь через оконный откос qw в зависимости от температуры внутреннего tв = 14 °С и наружного tн = –8. 30 °С воздуха, толщины стены dо = 1,16 м и положения двойного оконного деревянного переплета толщиной dок = 0,15 м по отношению к продольной оси стены

Из анализа результатов, приведённых на рис. 3 и 4 следует, что только за счет рационального расположения оконного переплета можно достичь экономии тепловой энергии в церквях порядка 3,5–7 % от общих теплопотерь здания. К этому следует добавить, что уменьшенная величина зоны возможной конденсации на поверхности откоса будет способствовать сохранности фресок и художественной росписи интерьера собора.

В результате можно сделать следующие выводы:

1. В нормах на проектирование и строительство зданий и сооружений отмечается ужесточение требований к ограждающим конструкциям как у нас в стране, так и за рубежом.

2. Теплопотери через окна в большинстве случаев составляют большую долю теплопотерь через ограждающие конструкции зданий.

Читать еще:  Фиксаторы откосов для пластиковых окон

3. Теплопотери через оконные откосы и их тепловой режим определяются конструкцией и расположением оконного переплета по отношению к продольной оси стены храма.

4. Теплопотери через оконные откосы составляют значительную долю потерь тепла за счет нарушения однородности температурного поля в ограждающих конструкциях.

5. При установке оконных блоков следует определять их рациональное положение с точки зрения уменьшения теплопотерь, минимизации ширины плоскости возможной конденсации на поверхности откосов или ее исключения.

Площадь остекления – важная составляющая правильного освещения помещения

Комфорт в любом помещении в значительной степени обусловлен его освещенностью. Лучшим источником является солнечный свет, который можно получить за счет окон. При грамотном остеклении в помещении будет не только светло, но также тепло и уютно.

Согласно СниП, чтобы обеспечить минимальное количество света, проникающего в комнату, площадь остекления составляет порядка 10–12,5% общей. Помимо линейных размеров окна важно также их соотношение. Для лучшего визуального восприятия рекомендуется отношение ширины к высоте по возможности приблизить к параметрам гармонического прямоугольника, скажем, 80 на 130.

Параметры остекления

Любой из параметров, необходимый для обеспечения наилучшего остекления помещения, рассчитываются на этапе проектирования, причем они индивидуальны.
Самостоятельный расчет для непрофессионала довольно сложен, поэтому в качестве примера рассмотрим уже готовые результаты при падении лучей света под углом 18–30° для различных типов помещений.
Комфортности освещения можно добиться при условии, что площадь остекления относиться к площади пола, как 1к 8 – 1 к 5. Иначе говоря, оконный проем должен составить 14–17% поверхности пола.
В зависимости от расположения дома, его этажности угол падения света меняется, следовательно, меняется и освещенность. Поэтому при близлежащих высоких домах-соседях уменьшение освещенности компенсируют большими размерами световых проемов.

Что же касается его расположения, то здесь во внимание принимается два фактора:

    удобство и безопасность выглядывания наружу; наличие свободного пространства над верхней кромкой, достаточного для крепления жалюзи, штор и т. д.

Выбор высоты подоконника зависит от типа комнаты:

    для жилых – 0,7–0,9 м; рабочих – 0,9–1,0 м; гардеробных – 1,75 м; в кухне –1,25 м.

Общие принципы расчета площади остекления

Световой проем, пожалуй, является наиболее уязвимым участком ограждающей конструкции дома. Через него, с одной стороны, уходит тепло, поэтому желательно, чтобы проем был минимальным. С другой – для достаточной освещенности он же должен быть больше. Это противоречие разрешается благодаря специально разработанным нормативным документам.

Площадь остекления рассчитывается согласно методикам, изложенным в СниП. В частности, приведены все необходимые формулы и коэффициенты, а также перечень норм освещенности для помещений разного типа.
В качестве основного исходного данного при упрощенных расчетах освещенности берется отношение площадей проема и пола. Данные получены экспериментальным путем и прошли многолетнюю проверку в различных частях мира. Они сведены таблицу довольно удобную для использования.

К примеру, в гражданских зданиях, расположенных в средней полосе, при условии небольшого затемнения близлежащих построек это соотношение равно:

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector